Turn Hood into Good: Recycling Silicon from Mesoporous Silica Nanoparticles through Magnesium Modification to Lower Toxicity and Promote Tissue Regeneration.

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2024-11-14 DOI:10.1021/acsnano.4c12519
Guanqi Liu, Ruidi Xia, Mixiao Gui, Linjun Zhang, Xuan Zhou, Junlong Xue, Yihua Cai, Yang Cao, Yin Xiao, Zetao Chen
{"title":"Turn Hood into Good: Recycling Silicon from Mesoporous Silica Nanoparticles through Magnesium Modification to Lower Toxicity and Promote Tissue Regeneration.","authors":"Guanqi Liu, Ruidi Xia, Mixiao Gui, Linjun Zhang, Xuan Zhou, Junlong Xue, Yihua Cai, Yang Cao, Yin Xiao, Zetao Chen","doi":"10.1021/acsnano.4c12519","DOIUrl":null,"url":null,"abstract":"<p><p>Mesoporous silica nanoparticles (MSNs) have gained wide application as excellent carrier materials; however, their limited degradation in the biological system and potential chronic toxicity pose challenges to their clinical applications. Previous studies have focused on optimizing the elimination performance of MSNs; interestingly, silicon has been well-documented as an essential body component. Therefore, converting MSNs into a form readily utilizable by the organism is a way to turn waste into a valuable resource. However, the recycling and utilization of MSNs are associated with significant hurdles. This study proposes an approach to impede the formation of siloxane, the crucial core in MSNs, by introducing a gradient concentration of Mg<sup>2+</sup>. The invasion of Mg<sup>2+</sup> significantly reduces the stability of Si-O-Si bonds by substituting silicon ions while preserving the functional three-dimensional structure. Recycling the increased release of Mg and Si ions enhances cellular antioxidant capacity, reduces oxidative stress reactions, improves mitochondrial function, and regulates macrophage inflammatory states. The proposed approach to converting MSN materials shows significant advantages for tissue regeneration in the periodontal defect model. This study opens an insight for applying MSNs in clinical applications in regenerative medicine.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":" ","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c12519","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Mesoporous silica nanoparticles (MSNs) have gained wide application as excellent carrier materials; however, their limited degradation in the biological system and potential chronic toxicity pose challenges to their clinical applications. Previous studies have focused on optimizing the elimination performance of MSNs; interestingly, silicon has been well-documented as an essential body component. Therefore, converting MSNs into a form readily utilizable by the organism is a way to turn waste into a valuable resource. However, the recycling and utilization of MSNs are associated with significant hurdles. This study proposes an approach to impede the formation of siloxane, the crucial core in MSNs, by introducing a gradient concentration of Mg2+. The invasion of Mg2+ significantly reduces the stability of Si-O-Si bonds by substituting silicon ions while preserving the functional three-dimensional structure. Recycling the increased release of Mg and Si ions enhances cellular antioxidant capacity, reduces oxidative stress reactions, improves mitochondrial function, and regulates macrophage inflammatory states. The proposed approach to converting MSN materials shows significant advantages for tissue regeneration in the periodontal defect model. This study opens an insight for applying MSNs in clinical applications in regenerative medicine.

Abstract Image

化腐朽为神奇:通过镁改性从介孔二氧化硅纳米颗粒中回收硅,以降低毒性并促进组织再生。
介孔二氧化硅纳米粒子(MSNs)作为优良的载体材料已得到广泛应用;然而,其在生物系统中的有限降解性和潜在的慢性毒性对其临床应用构成了挑战。以往的研究主要集中在优化 MSNs 的消除性能上;有趣的是,硅作为人体的重要组成部分已被充分证明。因此,将 MSNs 转化为生物体可利用的形式是变废为宝的一种方法。然而,MSN 的回收和利用却面临着巨大的障碍。本研究提出了一种通过引入梯度浓度的 Mg2+ 来阻碍 MSN 关键核心硅氧烷形成的方法。Mg2+ 的侵入在保留功能性三维结构的同时,通过替代硅离子显著降低了硅-氧-硅键的稳定性。循环利用增加释放的 Mg 和硅离子可增强细胞的抗氧化能力,减少氧化应激反应,改善线粒体功能,并调节巨噬细胞的炎症状态。所提出的转换 MSN 材料的方法在牙周缺损模型的组织再生方面具有显著优势。这项研究为将 MSN 应用于再生医学的临床应用提供了新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信