{"title":"Site-Specific Stochastic Rates and Energetics of Ag Nucleation on Highly Ordered Pyrolytic Graphite.","authors":"Iván Elías Mondaca-Medina, Hang Ren","doi":"10.1021/acsnano.4c09981","DOIUrl":null,"url":null,"abstract":"<p><p>Nucleation is a fundamentally important step in electrochemical phase transition reactions, e.g., in electrodeposition, which is pertinent for emerging battery technology, nanoparticle synthesis, and many industrial processes. Surface defects have been suggested to enhance nucleation rates. However, directly quantifying the nucleation rates at specific surface sites is challenging due to the ensemble averaging effect in bulk measurements. Herein, we report the measurement of rates and energetics of electronucleation across the model surface of highly oriented pyrolytic graphite (HOPG). Specifically, scanning electrochemical cell microscopy (SECCM) is used to confine the nucleation spatially in the nanoscale cell, allowing one nucleation event to be measured at one time. The scanning capability further allows the mapping of Ag nucleation at the step edge vs basal plane. A stochastic model is developed to extract the nucleation rate and energetics from voltammetric experiments. We observed a ∼57 mV difference in the median nucleation overpotential between the step edge and basal plane, corresponding to a ∼12 kJ mol<sup>-1</sup> difference in the nucleation energy barrier. The voltammetric method to measure the nucleation rate explored here can be extended to understand the heterogeneity of nucleation rates in other electrochemical nucleation systems, e.g., metal anode batteries.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":" ","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c09981","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Nucleation is a fundamentally important step in electrochemical phase transition reactions, e.g., in electrodeposition, which is pertinent for emerging battery technology, nanoparticle synthesis, and many industrial processes. Surface defects have been suggested to enhance nucleation rates. However, directly quantifying the nucleation rates at specific surface sites is challenging due to the ensemble averaging effect in bulk measurements. Herein, we report the measurement of rates and energetics of electronucleation across the model surface of highly oriented pyrolytic graphite (HOPG). Specifically, scanning electrochemical cell microscopy (SECCM) is used to confine the nucleation spatially in the nanoscale cell, allowing one nucleation event to be measured at one time. The scanning capability further allows the mapping of Ag nucleation at the step edge vs basal plane. A stochastic model is developed to extract the nucleation rate and energetics from voltammetric experiments. We observed a ∼57 mV difference in the median nucleation overpotential between the step edge and basal plane, corresponding to a ∼12 kJ mol-1 difference in the nucleation energy barrier. The voltammetric method to measure the nucleation rate explored here can be extended to understand the heterogeneity of nucleation rates in other electrochemical nucleation systems, e.g., metal anode batteries.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.