Hansoo Kim, Sungkwon Jeon, Juyeon Choi, Young Sang Park, Sung-Joon Park, Myung-Seok Lee, Yujin Nam, Hosik Park, MinJoong Kim, Changsoo Lee, Si Eon An, Jiyoon Jung, SeungHwan Kim, Jeong F Kim, Hyun-Seok Cho, Albert S Lee, Jung-Hyun Lee
{"title":"Interfacially Assembled Anion Exchange Membranes for Water Electrolysis.","authors":"Hansoo Kim, Sungkwon Jeon, Juyeon Choi, Young Sang Park, Sung-Joon Park, Myung-Seok Lee, Yujin Nam, Hosik Park, MinJoong Kim, Changsoo Lee, Si Eon An, Jiyoon Jung, SeungHwan Kim, Jeong F Kim, Hyun-Seok Cho, Albert S Lee, Jung-Hyun Lee","doi":"10.1021/acsnano.4c10212","DOIUrl":null,"url":null,"abstract":"<p><p>High-performance and durable anion exchange membranes (AEMs) are critical for realizing economical green hydrogen production through alkaline water electrolysis (AWE) or AEM water electrosysis (AEMWE). However, existing AEMs require sophisticated fabrication protocols and exhibit unsatisfactory electrochemical performance and long-term durability. Here we report an AEM fabricated via a one-pot, in situ interfacial Menshutkin reaction, which assembles a highly cross-linked polymer containing high-density quaternary ammoniums and nanovoids inside a reinforcing porous support. This structure endows the membrane with high anion-conducting ability, water uptake (but low swelling), and mechanical and thermochemical robustness. Consequently, the assembled membrane achieves excellent AWE (0.97 A cm<sup>-2</sup> at 1.8 V) and AEMWE (5.23 A cm<sup>-2</sup> at 1.8 V) performance at 5 wt % KOH and 80 °C, significantly exceeding that of commercial and previously developed membranes, and excellent long-term durability. Our approach provides an effective method for fabricating AEMs for various energy and environmental applications.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":" ","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c10212","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
High-performance and durable anion exchange membranes (AEMs) are critical for realizing economical green hydrogen production through alkaline water electrolysis (AWE) or AEM water electrosysis (AEMWE). However, existing AEMs require sophisticated fabrication protocols and exhibit unsatisfactory electrochemical performance and long-term durability. Here we report an AEM fabricated via a one-pot, in situ interfacial Menshutkin reaction, which assembles a highly cross-linked polymer containing high-density quaternary ammoniums and nanovoids inside a reinforcing porous support. This structure endows the membrane with high anion-conducting ability, water uptake (but low swelling), and mechanical and thermochemical robustness. Consequently, the assembled membrane achieves excellent AWE (0.97 A cm-2 at 1.8 V) and AEMWE (5.23 A cm-2 at 1.8 V) performance at 5 wt % KOH and 80 °C, significantly exceeding that of commercial and previously developed membranes, and excellent long-term durability. Our approach provides an effective method for fabricating AEMs for various energy and environmental applications.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.