Interface Engineering for Efficient Photocarrier Generation and Transfer in Strongly Coupled Metallic/Semiconducting 1T'/2H MoS2 Heterobilayers.

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2024-11-14 DOI:10.1021/acsnano.4c11792
Junhao Dong, Zhanggui Wu, Changan HuangFu, Yi Su, Xiaoyan Zheng, Wensheng Wu, Baisheng Sa, Jiajie Pei, Liying Jiao, Jingying Zheng, Hongbing Zhan, Qianting Wang
{"title":"Interface Engineering for Efficient Photocarrier Generation and Transfer in Strongly Coupled Metallic/Semiconducting 1T'/2H MoS<sub>2</sub> Heterobilayers.","authors":"Junhao Dong, Zhanggui Wu, Changan HuangFu, Yi Su, Xiaoyan Zheng, Wensheng Wu, Baisheng Sa, Jiajie Pei, Liying Jiao, Jingying Zheng, Hongbing Zhan, Qianting Wang","doi":"10.1021/acsnano.4c11792","DOIUrl":null,"url":null,"abstract":"<p><p>Developing alternative two-dimensional (2D) metallic/semiconducting (M/S) van der Waals heterostructures (vdWHs) along with an understanding of interfacial photocarrier behavior is crucial for designing high-performance optoelectronic devices. Here, we comprehensively explored the photophysical model of photocarrier generation and interfacial transfer in as-grown 2D 1T'/2H MoS<sub>2</sub> vdWHs using various spectroscopic characterizations. We demonstrated the transitions of activated photocarrier transfer trajectories by tuning the pump photon energies across the 2H MoS<sub>2</sub> bandgap. The importance of confined bilayer transfer systems and strong interlayer coupling at vdW interfaces for transfer efficiency was elucidated. Additionally, the fluorophlogopite substrate was found to be an external method for regulating photocarrier generation in individual 2H layers through the p-doping effect at the substrate-2H layer interfaces, and this influence was alleviated after introducing the 2H-1T' vdW interface. Particularly, 1T' MoS<sub>2</sub> as a broadband hot carrier absorber enabled the ultrafast (∼133 fs) injection and extraction of energetic hot carriers into the 2H layer via a photothermionic emission mechanism, achieving a high efficiency of ∼41% under 900 nm photoexcitation at room temperature. Our work offers fundamental insights into the complex interfacial carrier photophysics in 2D M/S vdWHs, providing a way of constructing advanced multifunctional devices by using these emerging materials as active components and interface engineering.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":null,"pages":null},"PeriodicalIF":15.8000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c11792","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Developing alternative two-dimensional (2D) metallic/semiconducting (M/S) van der Waals heterostructures (vdWHs) along with an understanding of interfacial photocarrier behavior is crucial for designing high-performance optoelectronic devices. Here, we comprehensively explored the photophysical model of photocarrier generation and interfacial transfer in as-grown 2D 1T'/2H MoS2 vdWHs using various spectroscopic characterizations. We demonstrated the transitions of activated photocarrier transfer trajectories by tuning the pump photon energies across the 2H MoS2 bandgap. The importance of confined bilayer transfer systems and strong interlayer coupling at vdW interfaces for transfer efficiency was elucidated. Additionally, the fluorophlogopite substrate was found to be an external method for regulating photocarrier generation in individual 2H layers through the p-doping effect at the substrate-2H layer interfaces, and this influence was alleviated after introducing the 2H-1T' vdW interface. Particularly, 1T' MoS2 as a broadband hot carrier absorber enabled the ultrafast (∼133 fs) injection and extraction of energetic hot carriers into the 2H layer via a photothermionic emission mechanism, achieving a high efficiency of ∼41% under 900 nm photoexcitation at room temperature. Our work offers fundamental insights into the complex interfacial carrier photophysics in 2D M/S vdWHs, providing a way of constructing advanced multifunctional devices by using these emerging materials as active components and interface engineering.

Abstract Image

强耦合金属/半导体 1T'/2H MoS2 异硅层中高效光载流子生成和传输的界面工程。
开发替代性二维(2D)金属/半导体(M/S)范德华异质结构(vdWHs)以及了解界面光载流子行为对于设计高性能光电器件至关重要。在这里,我们利用各种光谱特性全面探索了在生长的二维 1T'/2H MoS2 vdWHs 中产生光载流子和界面转移的光物理模型。我们通过调整泵浦光子在 2H MoS2 带隙上的能量,证明了活化光电载流子转移轨迹的转变。我们阐明了密闭双层转移系统和 vdW 界面的强层间耦合对转移效率的重要性。此外,研究还发现氟磷灰石衬底是通过衬底-2H 层界面的 p 掺杂效应调节单个 2H 层中光电载流子生成的外部方法,而在引入 2H-1T' vdW 界面后,这种影响得到了缓解。特别是,1T' MoS2 作为一种宽带热载流子吸收体,能够通过光热离子发射机制将高能热载流子超快(∼133 fs)注入和提取到 2H 层,在室温 900 纳米光激发下实现了 ∼41% 的高效率。我们的工作从根本上揭示了二维 M/S vdWHs 中复杂的界面载流子光物理,为利用这些新兴材料作为活性元件和界面工程构建先进的多功能器件提供了一条途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信