Fine-Tuning Microporosity of Crystalline Vanadomolybdate Frameworks for Selective Adsorptive Separation of Kr from Xe.

IF 3.7 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Suchona Akter, Yong Li, Min-Bum Kim, Md Omar Faruque, Zhonghua Peng, Praveen K Thallapally, Mohammad R Momeni
{"title":"Fine-Tuning Microporosity of Crystalline Vanadomolybdate Frameworks for Selective Adsorptive Separation of Kr from Xe.","authors":"Suchona Akter, Yong Li, Min-Bum Kim, Md Omar Faruque, Zhonghua Peng, Praveen K Thallapally, Mohammad R Momeni","doi":"10.1021/acs.langmuir.4c02910","DOIUrl":null,"url":null,"abstract":"<p><p>Selective adsorptive capture and separation of chemically inert krypton (Kr) and xenon (Xe) noble gases with very low ppmv concentrations in air and industrial off-gases constitute an important technological challenge. Here, using a synergistic combination of experiment and theory, the microporous crystalline vanadomolybdates (MoVO<sub><i>x</i></sub>) as highly selective Kr sorbents are studied in detail. By varying the Mo/V ratios, we show for the first time that their one-dimensional (1D) pores can be fine-tuned for the size-selective adsorption of Kr over the larger Xe with selectivities reaching >100. Using extensive electronic structure calculations and grand canonical Monte Carlo simulations, the competition between Kr uptake with CO<sub>2</sub> and N<sub>2</sub> was also investigated. As most materials reported so far are selective toward the larger, more polarizable Xe than Kr, this work constitutes an important step toward robust Kr-selective sorbent materials. This work highlights the potential use of porous crystalline transition metal oxides as energy-efficient and selective noble gas capture sorbents for industrial applications.</p>","PeriodicalId":50,"journal":{"name":"Langmuir","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.4c02910","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Selective adsorptive capture and separation of chemically inert krypton (Kr) and xenon (Xe) noble gases with very low ppmv concentrations in air and industrial off-gases constitute an important technological challenge. Here, using a synergistic combination of experiment and theory, the microporous crystalline vanadomolybdates (MoVOx) as highly selective Kr sorbents are studied in detail. By varying the Mo/V ratios, we show for the first time that their one-dimensional (1D) pores can be fine-tuned for the size-selective adsorption of Kr over the larger Xe with selectivities reaching >100. Using extensive electronic structure calculations and grand canonical Monte Carlo simulations, the competition between Kr uptake with CO2 and N2 was also investigated. As most materials reported so far are selective toward the larger, more polarizable Xe than Kr, this work constitutes an important step toward robust Kr-selective sorbent materials. This work highlights the potential use of porous crystalline transition metal oxides as energy-efficient and selective noble gas capture sorbents for industrial applications.

Abstract Image

微调结晶钒钼酸盐框架的微孔,从 Xe 中选择性吸附分离 Kr。
选择性吸附捕获和分离空气和工业废气中化学惰性气体浓度极低的氪(Kr)和氙(Xe)惰性气体是一项重要的技术挑战。在此,通过实验与理论的协同结合,详细研究了作为高选择性 Kr 吸附剂的微孔结晶钒钼酸盐(MoVOx)。通过改变 Mo/V 比率,我们首次发现其一维(1D)孔隙可以微调,以实现对较大 Xe 上 Kr 的尺寸选择性吸附,选择性可达 >100。通过大量的电子结构计算和大规范蒙特卡洛模拟,还研究了 Kr 与 CO2 和 N2 之间的吸附竞争。由于迄今为止报道的大多数材料都是选择性大于 Kr 的、极化性更强的 Xe,因此这项研究工作是向强 Kr 选择性吸附材料迈出的重要一步。这项研究强调了多孔结晶过渡金属氧化物作为高能效、高选择性惰性气体捕集吸附剂在工业应用中的潜在用途。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Langmuir
Langmuir 化学-材料科学:综合
CiteScore
6.50
自引率
10.30%
发文量
1464
审稿时长
2.1 months
期刊介绍: Langmuir is an interdisciplinary journal publishing articles in the following subject categories: Colloids: surfactants and self-assembly, dispersions, emulsions, foams Interfaces: adsorption, reactions, films, forces Biological Interfaces: biocolloids, biomolecular and biomimetic materials Materials: nano- and mesostructured materials, polymers, gels, liquid crystals Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do? Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*. This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信