Customizable Glycopolymers as Adjuvants for Cancer Immunotherapy: From Branching Degree Optimization to Cell Surface Engineering.

IF 5.5 2区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Biomacromolecules Pub Date : 2024-12-09 Epub Date: 2024-11-13 DOI:10.1021/acs.biomac.4c01230
Zhichen Zhu, Xingyu Heng, Fangjian Shan, He Yang, Yichen Wang, Hengyuan Zhang, Gaojian Chen, Hong Chen
{"title":"Customizable Glycopolymers as Adjuvants for Cancer Immunotherapy: From Branching Degree Optimization to Cell Surface Engineering.","authors":"Zhichen Zhu, Xingyu Heng, Fangjian Shan, He Yang, Yichen Wang, Hengyuan Zhang, Gaojian Chen, Hong Chen","doi":"10.1021/acs.biomac.4c01230","DOIUrl":null,"url":null,"abstract":"<p><p>Engineering dendritic cell (DC) maturation is paramount for robust T-cell responses and immunological memory, critical for cancer immunotherapy. This work unveils a novel strategy using precisely controlled branching in synthetic glycopolymers to optimize DC activation. Using the distinct copolymerization kinetics of 2-(methacrylamido) glucopyranose (MAG) and diethylene glycol dimethacrylate (DEGDMA) in a RAFT polymerization, unique glycopolymers with varying branching degrees are created. These strategically produced gradient branched glycopolymers with sugar moieties on the outer chain potently promote DC maturation. Strikingly, low-branched glycopolymers demonstrate superior activity, both in pure form and when engineered on tumor cell surfaces. Quartz crystal microbalance and theoretical simulations elucidate the crucial role of branching in modulating glycopolymer-DC receptor interactions. Low-branched gradient glycopolymers have shown a notable advantage and are promising adjuvants in DC-based cancer immunotherapy.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":"7975-7984"},"PeriodicalIF":5.5000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomacromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.biomac.4c01230","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/13 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Engineering dendritic cell (DC) maturation is paramount for robust T-cell responses and immunological memory, critical for cancer immunotherapy. This work unveils a novel strategy using precisely controlled branching in synthetic glycopolymers to optimize DC activation. Using the distinct copolymerization kinetics of 2-(methacrylamido) glucopyranose (MAG) and diethylene glycol dimethacrylate (DEGDMA) in a RAFT polymerization, unique glycopolymers with varying branching degrees are created. These strategically produced gradient branched glycopolymers with sugar moieties on the outer chain potently promote DC maturation. Strikingly, low-branched glycopolymers demonstrate superior activity, both in pure form and when engineered on tumor cell surfaces. Quartz crystal microbalance and theoretical simulations elucidate the crucial role of branching in modulating glycopolymer-DC receptor interactions. Low-branched gradient glycopolymers have shown a notable advantage and are promising adjuvants in DC-based cancer immunotherapy.

可定制的糖聚合物作为癌症免疫疗法的佐剂:从分支度优化到细胞表面工程。
树突状细胞(DC)成熟工程对于强大的 T 细胞反应和免疫记忆至关重要,而这对于癌症免疫疗法也至关重要。这项研究揭示了一种利用精确控制合成糖聚合物分支来优化 DC 激活的新策略。利用 2-(甲基丙烯酰胺基)吡喃葡萄糖(MAG)和二乙二醇二甲基丙烯酸酯(DEGDMA)在 RAFT 聚合过程中不同的共聚动力学,创造出具有不同支化度的独特糖聚合物。这些经过策略性生产的梯度支化糖聚合物外链含有糖分子,能有效促进直流电的成熟。引人注目的是,低支化糖聚合物在纯形式和在肿瘤细胞表面设计时都表现出卓越的活性。石英晶体微天平和理论模拟阐明了分支在调节糖聚合物-直流受体相互作用中的关键作用。低支化梯度糖聚合物显示出明显的优势,是基于直流电的癌症免疫疗法中前景广阔的辅助剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomacromolecules
Biomacromolecules 化学-高分子科学
CiteScore
10.60
自引率
4.80%
发文量
417
审稿时长
1.6 months
期刊介绍: Biomacromolecules is a leading forum for the dissemination of cutting-edge research at the interface of polymer science and biology. Submissions to Biomacromolecules should contain strong elements of innovation in terms of macromolecular design, synthesis and characterization, or in the application of polymer materials to biology and medicine. Topics covered by Biomacromolecules include, but are not exclusively limited to: sustainable polymers, polymers based on natural and renewable resources, degradable polymers, polymer conjugates, polymeric drugs, polymers in biocatalysis, biomacromolecular assembly, biomimetic polymers, polymer-biomineral hybrids, biomimetic-polymer processing, polymer recycling, bioactive polymer surfaces, original polymer design for biomedical applications such as immunotherapy, drug delivery, gene delivery, antimicrobial applications, diagnostic imaging and biosensing, polymers in tissue engineering and regenerative medicine, polymeric scaffolds and hydrogels for cell culture and delivery.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信