{"title":"Enhancing the Assembly Properties of Bottom-Up Coarse-Grained Phospholipids.","authors":"Patrick G Sahrmann, Gregory A Voth","doi":"10.1021/acs.jctc.4c00905","DOIUrl":null,"url":null,"abstract":"<p><p>A plethora of key biological events occur at the cellular membrane where the large spatiotemporal scales necessitate dimensionality reduction or coarse-graining approaches over conventional all-atom molecular dynamics simulation. Constructing coarse-grained descriptions of membranes systematically from statistical mechanical principles has largely remained challenging due to the necessity of capturing amphipathic self-assembling behavior in coarse-grained models. We show that bottom-up coarse-grained lipid models can possess metastable morphological behavior and that this potential metastability has ramifications for accurate development and training. We in turn develop a training algorithm which evades metastability issues by linking model training to self-assembling behavior, and demonstrate its robustness via construction of solvent-free coarse-grained models of various phospholipid membranes, including lipid species such as phosphatidylcholines, phosphatidylserines, sphingolipids, and cholesterol. The resulting coarse-grained lipid models are orders of magnitude faster than their atomistic counterparts while retaining structural fidelity and constitute a promising direction for the development of coarse-grained models of realistic cell membranes.</p>","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":" ","pages":"10235-10246"},"PeriodicalIF":5.7000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11604101/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jctc.4c00905","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/13 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
A plethora of key biological events occur at the cellular membrane where the large spatiotemporal scales necessitate dimensionality reduction or coarse-graining approaches over conventional all-atom molecular dynamics simulation. Constructing coarse-grained descriptions of membranes systematically from statistical mechanical principles has largely remained challenging due to the necessity of capturing amphipathic self-assembling behavior in coarse-grained models. We show that bottom-up coarse-grained lipid models can possess metastable morphological behavior and that this potential metastability has ramifications for accurate development and training. We in turn develop a training algorithm which evades metastability issues by linking model training to self-assembling behavior, and demonstrate its robustness via construction of solvent-free coarse-grained models of various phospholipid membranes, including lipid species such as phosphatidylcholines, phosphatidylserines, sphingolipids, and cholesterol. The resulting coarse-grained lipid models are orders of magnitude faster than their atomistic counterparts while retaining structural fidelity and constitute a promising direction for the development of coarse-grained models of realistic cell membranes.
期刊介绍:
The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.