Mònica Ferrer-Roda, Ana Gil, Maria-Teresa Paramio, Dolors Izquierdo
{"title":"Effect of biphasic in vitro maturation (CAPA-IVM) on EGF receptor and embryo development of prepubertal goat oocytes according to follicle size.","authors":"Mònica Ferrer-Roda, Ana Gil, Maria-Teresa Paramio, Dolors Izquierdo","doi":"10.1080/10495398.2024.2422316","DOIUrl":null,"url":null,"abstract":"<p><p>Oocytes spontaneously resume meiosis following their liberation from follicles, preventing full competence acquisition. Biphasic IVM (CAPA-IVM) maintains oocytes in meiotic arrest to improve developmental competence, and it specially affects poorly developed oocytes. We assessed the effect of CAPA-IVM on oocytes from small (<3mm) and large (>3mm) follicles of prepubertal goats. Oocytes were cultured for 6h in pre-IVM with C-type natriuretic peptide (CNP) and estradiol as meiotic inhibitors, and germinal vesicle (GV) rate and chromatin configuration were assessed. Then, oocytes were cultured in conventional IVM (c-IVM) or CAPA-IVM (pre-IVM + c-IVM) and EGF receptor (EGFR) protein expression, intra-oocyte ROS and blastocyst development were assessed. GV rate was higher in CNP groups than control (69% vs 28%, and 67% vs 31%, small and large follicles, respectively), but GV chromatin configuration was similar. In large follicles, EGFR expression was higher in oocytes and cumulus cells after CAPA-IVM, and ROS levels were lower. In small follicles these differences were not observed. c-IVM and CAPA-IVM produced similar blastocyst rates in small (3.7% vs 2.6%, respectively) and large follicles (8.3% vs 2.5%). Overall, CAPA-IVM enhanced EGFR expression for EGF peptide signalling and antioxidant capacity in oocytes from large follicles but oocytes from small follicles were too immature to benefit from it.</p>","PeriodicalId":7836,"journal":{"name":"Animal Biotechnology","volume":"35 1","pages":"2422316"},"PeriodicalIF":1.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal Biotechnology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1080/10495398.2024.2422316","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/10 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Oocytes spontaneously resume meiosis following their liberation from follicles, preventing full competence acquisition. Biphasic IVM (CAPA-IVM) maintains oocytes in meiotic arrest to improve developmental competence, and it specially affects poorly developed oocytes. We assessed the effect of CAPA-IVM on oocytes from small (<3mm) and large (>3mm) follicles of prepubertal goats. Oocytes were cultured for 6h in pre-IVM with C-type natriuretic peptide (CNP) and estradiol as meiotic inhibitors, and germinal vesicle (GV) rate and chromatin configuration were assessed. Then, oocytes were cultured in conventional IVM (c-IVM) or CAPA-IVM (pre-IVM + c-IVM) and EGF receptor (EGFR) protein expression, intra-oocyte ROS and blastocyst development were assessed. GV rate was higher in CNP groups than control (69% vs 28%, and 67% vs 31%, small and large follicles, respectively), but GV chromatin configuration was similar. In large follicles, EGFR expression was higher in oocytes and cumulus cells after CAPA-IVM, and ROS levels were lower. In small follicles these differences were not observed. c-IVM and CAPA-IVM produced similar blastocyst rates in small (3.7% vs 2.6%, respectively) and large follicles (8.3% vs 2.5%). Overall, CAPA-IVM enhanced EGFR expression for EGF peptide signalling and antioxidant capacity in oocytes from large follicles but oocytes from small follicles were too immature to benefit from it.
期刊介绍:
Biotechnology can be defined as any technique that uses living organisms (or parts of organisms like cells, genes, proteins) to make or modify products, to improve plants, animals or microorganisms for a specific use. Animal Biotechnology publishes research on the identification and manipulation of genes and their products, stressing applications in domesticated animals. The journal publishes full-length articles and short research communications, as well as comprehensive reviews. The journal also provides a forum for regulatory or scientific issues related to cell and molecular biology applied to animal biotechnology.
Submissions on the following topics are particularly welcome:
- Applied microbiology, immunogenetics and antibiotic resistance
- Genome engineering and animal models
- Comparative genomics
- Gene editing and CRISPRs
- Reproductive biotechnologies
- Synthetic biology and design of new genomes