The peripheral Atf3 + neuronal population is responsible for nerve regeneration at the early stage of nerve injury revealed by single-cell RNA sequencing.
Li Liu, Junhui Chen, Wen Yin, Po Gao, Yinghui Fan, Daxiang Wen, Yingfu Jiao, Weifeng Yu
{"title":"The peripheral Atf3 <sup>+</sup> neuronal population is responsible for nerve regeneration at the early stage of nerve injury revealed by single-cell RNA sequencing.","authors":"Li Liu, Junhui Chen, Wen Yin, Po Gao, Yinghui Fan, Daxiang Wen, Yingfu Jiao, Weifeng Yu","doi":"10.3724/abbs.2024169","DOIUrl":null,"url":null,"abstract":"<p><p>Peripheral nerve injury (PNI) can transform primary somatosensory neurons to a regenerative state. However, the details of the transcriptomic changes associated with the nerve regeneration of somatosensory neurons remain unclear. In this study, single-cell RNA sequencing (scRNA-seq) is conducted on mouse dorsal root ganglion (DRG) cells after the early stage of nerve injury on day 3 after chronic constriction injury (CCI). We observe that a novel CCI-induced neuronal population (CIP) emerge and express high levels of activating transcription factor ( <i>Atf3</i>), a neuronal injury marker. CIP neurons highly express regeneration-associated genes (RAGs) and are enriched in regeneration-related gene ontology (GO) terms, suggesting that these neurons can constitute a pro-regenerative population. Moreover, intercellular communication networks show that CIP neurons closely communicate with satellite glial cells (SGCs) and specifically transmit strong <i>Fgf3</i>- <i>Fgfr1</i> signaling to SGCs, which could initiate regeneration-associated transcriptional changes in SGCs. We also confirm that regenerative progress occurs at the early stage of nerve injury because immunohistochemistry shows that the expression of ATF3 is significantly increased beginning at 3 days post-CCI and decreased at 1 month post-CCI. Our bioinformatics analysis at single-cell resolution advances the knowledge of regenerative dynamic transcriptional changes in DRG cells after injury and the underlying molecular mechanisms involved.</p>","PeriodicalId":6978,"journal":{"name":"Acta biochimica et biophysica Sinica","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta biochimica et biophysica Sinica","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3724/abbs.2024169","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Peripheral nerve injury (PNI) can transform primary somatosensory neurons to a regenerative state. However, the details of the transcriptomic changes associated with the nerve regeneration of somatosensory neurons remain unclear. In this study, single-cell RNA sequencing (scRNA-seq) is conducted on mouse dorsal root ganglion (DRG) cells after the early stage of nerve injury on day 3 after chronic constriction injury (CCI). We observe that a novel CCI-induced neuronal population (CIP) emerge and express high levels of activating transcription factor ( Atf3), a neuronal injury marker. CIP neurons highly express regeneration-associated genes (RAGs) and are enriched in regeneration-related gene ontology (GO) terms, suggesting that these neurons can constitute a pro-regenerative population. Moreover, intercellular communication networks show that CIP neurons closely communicate with satellite glial cells (SGCs) and specifically transmit strong Fgf3- Fgfr1 signaling to SGCs, which could initiate regeneration-associated transcriptional changes in SGCs. We also confirm that regenerative progress occurs at the early stage of nerve injury because immunohistochemistry shows that the expression of ATF3 is significantly increased beginning at 3 days post-CCI and decreased at 1 month post-CCI. Our bioinformatics analysis at single-cell resolution advances the knowledge of regenerative dynamic transcriptional changes in DRG cells after injury and the underlying molecular mechanisms involved.
期刊介绍:
Acta Biochimica et Biophysica Sinica (ABBS) is an internationally peer-reviewed journal sponsored by the Shanghai Institute of Biochemistry and Cell Biology (CAS). ABBS aims to publish original research articles and review articles in diverse fields of biochemical research including Protein Science, Nucleic Acids, Molecular Biology, Cell Biology, Biophysics, Immunology, and Signal Transduction, etc.