Rafay Syed, Palanivel Rengasamy, Sanjay Rajagopalan, Jeffrey A Deiuliis, Andrei Maiseyeu
{"title":"MicroRNA 223 Enhances ABCA1 Protein Stability and Supports Efflux in Cholesterol-Burdened Macrophages.","authors":"Rafay Syed, Palanivel Rengasamy, Sanjay Rajagopalan, Jeffrey A Deiuliis, Andrei Maiseyeu","doi":"10.1007/s12013-024-01603-3","DOIUrl":null,"url":null,"abstract":"<p><p>Macrophages are present in all vertebrates as part of the innate immune system, which protects from pathogens and scavenges sterol rich, cellular debris and modified lipoproteins. Thus, resident macrophages are prone to excessive levels of intracellular cholesterol esters. Intramacrophage cholesterol esters can efflux via cell surface transporters, ABCA1 and ABCG1, to lipoprotein carriers such as apo-AI and HDL. Systemically, Apo-AI and HDL facilitate trafficking of cholesterol back to the liver, in a process called reverse cholesterol transport. Impaired macrophage cholesterol efflux is a primary factor in the etiology of atherosclerosis. We hypothesized that microRNA 223 (miR-223) regulated macrophage LDL metabolism, due to predicted binding to Sp1 and Sp3 mRNA, transcriptional regulators of ABCA1 expression. Primary mouse (WT, miR-223 KO) macrophages were loaded with acetylated LDL and stimulated with LPS to form an inflammatory foam cell phenotype. miR-223 KO foam cells demonstrated impaired efflux to both apo-AI and HDL. While transcriptional regulation was intact in miR-223 KO foam cells, ABCA1 protein degradation was greatly accelerated. Blockade of both proteasomal and lysosomal degradation pathways rescued miR-223 deficiency-mediated ABCA1 degradation to the WT levels. Our findings demonstrate that miR-223 expression in macrophages is required for maintenance of ABCA1 and ABCG1 proteins.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biochemistry and Biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12013-024-01603-3","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Macrophages are present in all vertebrates as part of the innate immune system, which protects from pathogens and scavenges sterol rich, cellular debris and modified lipoproteins. Thus, resident macrophages are prone to excessive levels of intracellular cholesterol esters. Intramacrophage cholesterol esters can efflux via cell surface transporters, ABCA1 and ABCG1, to lipoprotein carriers such as apo-AI and HDL. Systemically, Apo-AI and HDL facilitate trafficking of cholesterol back to the liver, in a process called reverse cholesterol transport. Impaired macrophage cholesterol efflux is a primary factor in the etiology of atherosclerosis. We hypothesized that microRNA 223 (miR-223) regulated macrophage LDL metabolism, due to predicted binding to Sp1 and Sp3 mRNA, transcriptional regulators of ABCA1 expression. Primary mouse (WT, miR-223 KO) macrophages were loaded with acetylated LDL and stimulated with LPS to form an inflammatory foam cell phenotype. miR-223 KO foam cells demonstrated impaired efflux to both apo-AI and HDL. While transcriptional regulation was intact in miR-223 KO foam cells, ABCA1 protein degradation was greatly accelerated. Blockade of both proteasomal and lysosomal degradation pathways rescued miR-223 deficiency-mediated ABCA1 degradation to the WT levels. Our findings demonstrate that miR-223 expression in macrophages is required for maintenance of ABCA1 and ABCG1 proteins.
期刊介绍:
Cell Biochemistry and Biophysics (CBB) aims to publish papers on the nature of the biochemical and biophysical mechanisms underlying the structure, control and function of cellular systems
The reports should be within the framework of modern biochemistry and chemistry, biophysics and cell physiology, physics and engineering, molecular and structural biology. The relationship between molecular structure and function under investigation is emphasized.
Examples of subject areas that CBB publishes are:
· biochemical and biophysical aspects of cell structure and function;
· interactions of cells and their molecular/macromolecular constituents;
· innovative developments in genetic and biomolecular engineering;
· computer-based analysis of tissues, cells, cell networks, organelles, and molecular/macromolecular assemblies;
· photometric, spectroscopic, microscopic, mechanical, and electrical methodologies/techniques in analytical cytology, cytometry and innovative instrument design
For articles that focus on computational aspects, authors should be clear about which docking and molecular dynamics algorithms or software packages are being used as well as details on the system parameterization, simulations conditions etc. In addition, docking calculations (virtual screening, QSAR, etc.) should be validated either by experimental studies or one or more reliable theoretical cross-validation methods.