Nourhan Hamdy, Mohammad El-Geundi, Mohram Fuoad, Mohamed Gar Alalm
{"title":"Optimization and reusability of photocatalytic g-C<sub>3</sub>N<sub>4</sub>/W-TiO<sub>2</sub>/PVDF membranes for degradation of sulfamethazine.","authors":"Nourhan Hamdy, Mohammad El-Geundi, Mohram Fuoad, Mohamed Gar Alalm","doi":"10.1007/s11356-024-35445-6","DOIUrl":null,"url":null,"abstract":"<p><p>Pharmaceuticals and personal care products (PPCPs) are prevalent emerging pollutants in the aquatic environment. The photocatalysis process has proven high efficiency in degrading PPCPs; however, the fate and repercussions of photocatalyst residuals are a major concern. To avoid that, we developed a composite from graphitic carbon nitride/tungsten doped with titanium dioxide (g-C<sub>3</sub>N<sub>4</sub>/W-TiO<sub>2</sub>) and loaded it on polyvinylidene fluoride (PVDF) membranes by the phase-inversion method. X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and other different analyses implied the successful synthesis of g-C<sub>3</sub>N<sub>4</sub>/W-TiO<sub>2</sub> composite and coating on PVDF membranes. A Box-Behnken design (BBD) was used to optimize the operational parameters, including pH, g-C<sub>3</sub>N<sub>4</sub> ratio in the composite, and initial SMZ concentration by the response surface methodology (RSM). The highest SMZ degradation percentage was 98.60% after 240 min of irradiation. Liquid chromatography with tandem mass spectrometry (LC-MS/MS) along with suspect screening was used to identify the intermediate transformation products and propose the SMZ degradation pathway. The loss in membrane activity after five cycles of photocatalytic degradation was about 18%. According to the current study, the photocatalytic membrane g-C<sub>3</sub>N<sub>4</sub>/W-TiO<sub>2</sub>/PVDF is promising for removing sulfonamide antibiotics from wastewater.</p>","PeriodicalId":545,"journal":{"name":"Environmental Science and Pollution Research","volume":" ","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science and Pollution Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s11356-024-35445-6","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Pharmaceuticals and personal care products (PPCPs) are prevalent emerging pollutants in the aquatic environment. The photocatalysis process has proven high efficiency in degrading PPCPs; however, the fate and repercussions of photocatalyst residuals are a major concern. To avoid that, we developed a composite from graphitic carbon nitride/tungsten doped with titanium dioxide (g-C3N4/W-TiO2) and loaded it on polyvinylidene fluoride (PVDF) membranes by the phase-inversion method. X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and other different analyses implied the successful synthesis of g-C3N4/W-TiO2 composite and coating on PVDF membranes. A Box-Behnken design (BBD) was used to optimize the operational parameters, including pH, g-C3N4 ratio in the composite, and initial SMZ concentration by the response surface methodology (RSM). The highest SMZ degradation percentage was 98.60% after 240 min of irradiation. Liquid chromatography with tandem mass spectrometry (LC-MS/MS) along with suspect screening was used to identify the intermediate transformation products and propose the SMZ degradation pathway. The loss in membrane activity after five cycles of photocatalytic degradation was about 18%. According to the current study, the photocatalytic membrane g-C3N4/W-TiO2/PVDF is promising for removing sulfonamide antibiotics from wastewater.
期刊介绍:
Environmental Science and Pollution Research (ESPR) serves the international community in all areas of Environmental Science and related subjects with emphasis on chemical compounds. This includes:
- Terrestrial Biology and Ecology
- Aquatic Biology and Ecology
- Atmospheric Chemistry
- Environmental Microbiology/Biobased Energy Sources
- Phytoremediation and Ecosystem Restoration
- Environmental Analyses and Monitoring
- Assessment of Risks and Interactions of Pollutants in the Environment
- Conservation Biology and Sustainable Agriculture
- Impact of Chemicals/Pollutants on Human and Animal Health
It reports from a broad interdisciplinary outlook.