Yang Liu , Xiding Wang , Huimin Li , Ruikai Zhang , Xudong Liu , Fangru Nan , Qi Liu , Junping Lv , Jia Feng , Chao Ma , Shulian Xie
{"title":"Evaluating the role of recalcitrant dissolved organic matter in bacterial community dynamics in urbanized freshwater ecosystems","authors":"Yang Liu , Xiding Wang , Huimin Li , Ruikai Zhang , Xudong Liu , Fangru Nan , Qi Liu , Junping Lv , Jia Feng , Chao Ma , Shulian Xie","doi":"10.1016/j.scitotenv.2024.177475","DOIUrl":null,"url":null,"abstract":"<div><div>Dissolved organic matter (DOM) and recalcitrant dissolved organic matter (RDOM) play distinct roles in shaping microbial communities. However, characterizing these roles is difficult, especially in ecosystems subjected to varying degrees of anthropogenic influence. This study investigated the molecular compositions and ecological impacts of DOM and RDOM in the Fen River, Shanxi Taiyuan, comparing pristine upstream regions with highly urbanized downstream areas. Using 16S rRNA gene sequencing and LC-MS-based metabolomics, we observed significant shifts in microbial community composition, diversity, and metabolic functions. Upstream communities, characterized by higher diversity, were dominated by Bacteroidota, Proteobacteria, and Cyanobacteria, while downstream communities, influenced by pollution, exhibited increased expression of genes related to amino acid metabolism. Fluorescence spectroscopy and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) revealed that upstream DOM contained higher proportions of complex, high molecular weight compounds, including significant proportions of carboxyl-rich alicyclic molecules (CRAM) and island of stability (IOS) compounds, which play key roles in long-term carbon storage and microbial carbon sequestration. In contrast, downstream DOM was characterized as having lower aromaticity and more saturated compounds, with reduced proportions of CRAM and IOS, reflecting the impact of anthropogenic activities. These findings underscored the critical roles of CRAM and IOS in regulating DOM stability and microbial communities, further highlighting the need for targeted pollution control strategies to preserve ecosystem function in urbanized water bodies.</div></div>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":"957 ","pages":"Article 177475"},"PeriodicalIF":8.2000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of the Total Environment","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0048969724076320","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Dissolved organic matter (DOM) and recalcitrant dissolved organic matter (RDOM) play distinct roles in shaping microbial communities. However, characterizing these roles is difficult, especially in ecosystems subjected to varying degrees of anthropogenic influence. This study investigated the molecular compositions and ecological impacts of DOM and RDOM in the Fen River, Shanxi Taiyuan, comparing pristine upstream regions with highly urbanized downstream areas. Using 16S rRNA gene sequencing and LC-MS-based metabolomics, we observed significant shifts in microbial community composition, diversity, and metabolic functions. Upstream communities, characterized by higher diversity, were dominated by Bacteroidota, Proteobacteria, and Cyanobacteria, while downstream communities, influenced by pollution, exhibited increased expression of genes related to amino acid metabolism. Fluorescence spectroscopy and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) revealed that upstream DOM contained higher proportions of complex, high molecular weight compounds, including significant proportions of carboxyl-rich alicyclic molecules (CRAM) and island of stability (IOS) compounds, which play key roles in long-term carbon storage and microbial carbon sequestration. In contrast, downstream DOM was characterized as having lower aromaticity and more saturated compounds, with reduced proportions of CRAM and IOS, reflecting the impact of anthropogenic activities. These findings underscored the critical roles of CRAM and IOS in regulating DOM stability and microbial communities, further highlighting the need for targeted pollution control strategies to preserve ecosystem function in urbanized water bodies.
期刊介绍:
The Science of the Total Environment is an international journal dedicated to scientific research on the environment and its interaction with humanity. It covers a wide range of disciplines and seeks to publish innovative, hypothesis-driven, and impactful research that explores the entire environment, including the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere.
The journal's updated Aims & Scope emphasizes the importance of interdisciplinary environmental research with broad impact. Priority is given to studies that advance fundamental understanding and explore the interconnectedness of multiple environmental spheres. Field studies are preferred, while laboratory experiments must demonstrate significant methodological advancements or mechanistic insights with direct relevance to the environment.