Fangqin Zhang, Zhan Shen, Siyi Huang, Yuan Zhu, Ming Yi
{"title":"SpaInGNN: Enhanced clustering and integration of spatial transcriptomics based on refined graph neural networks","authors":"Fangqin Zhang, Zhan Shen, Siyi Huang, Yuan Zhu, Ming Yi","doi":"10.1016/j.ymeth.2024.11.006","DOIUrl":null,"url":null,"abstract":"<div><div>Recent developments in spatial transcriptomics (ST) technology have markedly enhanced the proposed capacity to comprehensively characterize gene expression patterns within tissue microenvironments while crucially preserving spatial context. However, the identification of spatial domains at the single-cell level remains a significant challenge in elucidating biological processes. To address this, SpaInGNN was developed, a sophisticated graph neural network (GNN) framework that accurately delineates spatial domains by integrating spatial location data, histological information, and gene expression profiles into low-dimensional latent embeddings. Additionally, to fully leverage spatial coordinate data, spatial integration using graph neural network (SpaInGNN) refines the graph constructed for spatial locations by incorporating both tissue image distance and Euclidean distance, following a pre-clustering of gene expression profiles. This refined graph is then embedded using a self-supervised GNN, which minimizes self-reconfiguration loss. By applying SpaInGNN to refined graphs across multiple consecutive tissue slices, this study mitigates the impact of batch effects in data analysis. The proposed method demonstrates substantial improvements in the accuracy of spatial domain recognition, providing a more faithful representation of the tissue organization in both mouse olfactory bulb and human lateral prefrontal cortex samples.</div></div>","PeriodicalId":390,"journal":{"name":"Methods","volume":"233 ","pages":"Pages 42-51"},"PeriodicalIF":4.2000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1046202324002433","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Recent developments in spatial transcriptomics (ST) technology have markedly enhanced the proposed capacity to comprehensively characterize gene expression patterns within tissue microenvironments while crucially preserving spatial context. However, the identification of spatial domains at the single-cell level remains a significant challenge in elucidating biological processes. To address this, SpaInGNN was developed, a sophisticated graph neural network (GNN) framework that accurately delineates spatial domains by integrating spatial location data, histological information, and gene expression profiles into low-dimensional latent embeddings. Additionally, to fully leverage spatial coordinate data, spatial integration using graph neural network (SpaInGNN) refines the graph constructed for spatial locations by incorporating both tissue image distance and Euclidean distance, following a pre-clustering of gene expression profiles. This refined graph is then embedded using a self-supervised GNN, which minimizes self-reconfiguration loss. By applying SpaInGNN to refined graphs across multiple consecutive tissue slices, this study mitigates the impact of batch effects in data analysis. The proposed method demonstrates substantial improvements in the accuracy of spatial domain recognition, providing a more faithful representation of the tissue organization in both mouse olfactory bulb and human lateral prefrontal cortex samples.
期刊介绍:
Methods focuses on rapidly developing techniques in the experimental biological and medical sciences.
Each topical issue, organized by a guest editor who is an expert in the area covered, consists solely of invited quality articles by specialist authors, many of them reviews. Issues are devoted to specific technical approaches with emphasis on clear detailed descriptions of protocols that allow them to be reproduced easily. The background information provided enables researchers to understand the principles underlying the methods; other helpful sections include comparisons of alternative methods giving the advantages and disadvantages of particular methods, guidance on avoiding potential pitfalls, and suggestions for troubleshooting.