{"title":"HistoSPACE: Histology-inspired spatial transcriptome prediction and characterization engine","authors":"Shivam Kumar, Samrat Chatterjee","doi":"10.1016/j.ymeth.2024.11.002","DOIUrl":null,"url":null,"abstract":"<div><div>Spatial transcriptomics (ST) enables the visualization of gene expression within the context of tissue morphology. This emerging discipline has the potential to serve as a foundation for developing tools to design precision medicines. However, due to the higher costs and expertise required for such experiments, its translation into a regular clinical practice might be challenging. Despite implementing modern deep learning to enhance information obtained from histological images using AI, efforts have been constrained by limitations in the diversity of information. In this paper, we developed a model, HistoSPACE, that explores the diversity of histological images available with ST data to extract molecular insights from tissue images. Further, our approach allows us to link the predicted expression with disease pathology. Our proposed study built an image encoder derived from a universal image autoencoder. This image encoder was connected to convolution blocks to build the final model. It was further fine-tuned with the help of ST-Data. The number of model parameters is small and requires lesser system memory and relatively lesser training time. Making it lightweight in comparison to traditional histological models. Our developed model demonstrates significant efficiency compared to contemporary algorithms, revealing a correlation of 0.56 in leave-one-out cross-validation. Finally, its robustness was validated through an independent dataset, showing similar prediction with predefined disease pathology. Our code is available at <span><span>https://github.com/samrat-lab/HistoSPACE</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":390,"journal":{"name":"Methods","volume":"232 ","pages":"Pages 107-114"},"PeriodicalIF":4.2000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1046202324002391","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Spatial transcriptomics (ST) enables the visualization of gene expression within the context of tissue morphology. This emerging discipline has the potential to serve as a foundation for developing tools to design precision medicines. However, due to the higher costs and expertise required for such experiments, its translation into a regular clinical practice might be challenging. Despite implementing modern deep learning to enhance information obtained from histological images using AI, efforts have been constrained by limitations in the diversity of information. In this paper, we developed a model, HistoSPACE, that explores the diversity of histological images available with ST data to extract molecular insights from tissue images. Further, our approach allows us to link the predicted expression with disease pathology. Our proposed study built an image encoder derived from a universal image autoencoder. This image encoder was connected to convolution blocks to build the final model. It was further fine-tuned with the help of ST-Data. The number of model parameters is small and requires lesser system memory and relatively lesser training time. Making it lightweight in comparison to traditional histological models. Our developed model demonstrates significant efficiency compared to contemporary algorithms, revealing a correlation of 0.56 in leave-one-out cross-validation. Finally, its robustness was validated through an independent dataset, showing similar prediction with predefined disease pathology. Our code is available at https://github.com/samrat-lab/HistoSPACE.
期刊介绍:
Methods focuses on rapidly developing techniques in the experimental biological and medical sciences.
Each topical issue, organized by a guest editor who is an expert in the area covered, consists solely of invited quality articles by specialist authors, many of them reviews. Issues are devoted to specific technical approaches with emphasis on clear detailed descriptions of protocols that allow them to be reproduced easily. The background information provided enables researchers to understand the principles underlying the methods; other helpful sections include comparisons of alternative methods giving the advantages and disadvantages of particular methods, guidance on avoiding potential pitfalls, and suggestions for troubleshooting.