Enhanced Olivine Reactivity in Wet Supercritical CO2 for Engineered Mineral Carbon Sequestration.

IF 5.2 3区 工程技术 Q2 ENERGY & FUELS
Energy & Fuels Pub Date : 2024-10-28 eCollection Date: 2024-11-07 DOI:10.1021/acs.energyfuels.4c04120
Mohamed A Saleh, Huw Shiel, Mary P Ryan, J P Martin Trusler, Samuel Krevor
{"title":"Enhanced Olivine Reactivity in Wet Supercritical CO<sub>2</sub> for Engineered Mineral Carbon Sequestration.","authors":"Mohamed A Saleh, Huw Shiel, Mary P Ryan, J P Martin Trusler, Samuel Krevor","doi":"10.1021/acs.energyfuels.4c04120","DOIUrl":null,"url":null,"abstract":"<p><p>The success of CO<sub>2</sub> mineralization as a potential solution for reducing carbon emissions hinges on understanding chemical interactions between basaltic minerals and CO<sub>2</sub>-charged fluids. This study provides a detailed analysis of olivine dissolution in CO<sub>2</sub>-water mixtures at 90 and 150 °C, 2-9 MPa, and for 8 and 24 h, in both water- and CO<sub>2</sub>-dominant conditions. By using olivine crystal sections instead of powders, surface agitation is prevented, closing the gap between laboratory studies and natural settings. Surface chemistry, texture, and cross-sectional properties were examined pre- and postreaction using a multiscale approach combining spectroscopic and imaging techniques. Results show that wet supercritical CO<sub>2</sub> environments lead to significant olivine dissolution, forming Mg-depleted, Si-enriched etched surfaces, and under certain conditions, the formation of passivating silica precipitates. In contrast, reactions in aqueous fluids caused minimal changes in surface chemistry and texture with no silica precipitation. These observations indicate that reaction extent in the CO<sub>2</sub>-rich phase is greater relative to water-rich mixtures at equivalent temperature, pressure, and reaction duration. The presence of silica precipitates incorporating leached metals indicates limited transport of reactant away from reaction sites in a CO<sub>2</sub>-rich medium. This study semi-quantitatively evaluates reaction extents in both CO<sub>2</sub>-rich and aqueous systems across a wide range of parameters, demonstrating faster mineralization in CO<sub>2</sub>-rich environments and highlighting their potential for enhancing the CO<sub>2</sub> storage efficiency.</p>","PeriodicalId":35,"journal":{"name":"Energy & Fuels","volume":"38 21","pages":"21028-21041"},"PeriodicalIF":5.2000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11551954/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Fuels","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acs.energyfuels.4c04120","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/7 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The success of CO2 mineralization as a potential solution for reducing carbon emissions hinges on understanding chemical interactions between basaltic minerals and CO2-charged fluids. This study provides a detailed analysis of olivine dissolution in CO2-water mixtures at 90 and 150 °C, 2-9 MPa, and for 8 and 24 h, in both water- and CO2-dominant conditions. By using olivine crystal sections instead of powders, surface agitation is prevented, closing the gap between laboratory studies and natural settings. Surface chemistry, texture, and cross-sectional properties were examined pre- and postreaction using a multiscale approach combining spectroscopic and imaging techniques. Results show that wet supercritical CO2 environments lead to significant olivine dissolution, forming Mg-depleted, Si-enriched etched surfaces, and under certain conditions, the formation of passivating silica precipitates. In contrast, reactions in aqueous fluids caused minimal changes in surface chemistry and texture with no silica precipitation. These observations indicate that reaction extent in the CO2-rich phase is greater relative to water-rich mixtures at equivalent temperature, pressure, and reaction duration. The presence of silica precipitates incorporating leached metals indicates limited transport of reactant away from reaction sites in a CO2-rich medium. This study semi-quantitatively evaluates reaction extents in both CO2-rich and aqueous systems across a wide range of parameters, demonstrating faster mineralization in CO2-rich environments and highlighting their potential for enhancing the CO2 storage efficiency.

增强湿式超临界二氧化碳中橄榄石的反应活性,实现工程矿物碳封存。
二氧化碳矿化作为减少碳排放的一种潜在解决方案,其成功与否取决于对玄武岩矿物和二氧化碳充注流体之间化学作用的了解。本研究详细分析了橄榄石在 90 和 150 °C、2-9 兆帕、8 和 24 小时的二氧化碳-水混合物中溶解的情况,包括水主导和二氧化碳主导两种条件。通过使用橄榄石晶体切片而不是粉末,避免了表面搅拌,缩小了实验室研究与自然环境之间的差距。采用光谱和成像技术相结合的多尺度方法,对反应前后的表面化学、纹理和截面特性进行了研究。结果表明,潮湿的超临界二氧化碳环境会导致橄榄石大量溶解,形成镁贫化、硅富集的蚀刻表面,并在某些条件下形成钝化二氧化硅沉淀。相比之下,在水性流体中的反应导致的表面化学和质地变化极小,且无二氧化硅沉淀。这些观察结果表明,在温度、压力和反应持续时间相同的情况下,富二氧化碳相中的反应程度要比富水混合物中的反应程度大。二氧化硅沉淀物与沥滤金属的结合表明,在富含二氧化碳的介质中,反应物从反应场所向外迁移的能力有限。这项研究半定量地评估了富二氧化碳和水体系在各种参数下的反应范围,表明富二氧化碳环境中的矿化速度更快,并突出了其提高二氧化碳封存效率的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy & Fuels
Energy & Fuels 工程技术-工程:化工
CiteScore
9.20
自引率
13.20%
发文量
1101
审稿时长
2.1 months
期刊介绍: Energy & Fuels publishes reports of research in the technical area defined by the intersection of the disciplines of chemistry and chemical engineering and the application domain of non-nuclear energy and fuels. This includes research directed at the formation of, exploration for, and production of fossil fuels and biomass; the properties and structure or molecular composition of both raw fuels and refined products; the chemistry involved in the processing and utilization of fuels; fuel cells and their applications; and the analytical and instrumental techniques used in investigations of the foregoing areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信