Yuxin Guo , Peipei Wan , Yue Xu , Siqin Zhang , Chenhui Li , Yueying Wang , Weili Heng , Wenjun Miao
{"title":"Facultative probiotics enable improved tumor distribution and deep penetration of photosensitizer for enhanced photodynamic therapy","authors":"Yuxin Guo , Peipei Wan , Yue Xu , Siqin Zhang , Chenhui Li , Yueying Wang , Weili Heng , Wenjun Miao","doi":"10.1016/j.colsurfb.2024.114372","DOIUrl":null,"url":null,"abstract":"<div><div>Photodynamic therapy (PDT) is an emerging cancer therapy known for its non-invasive approach and minimal side effects. However, the clinical effectiveness of PDT is limited by the poor distribution and penetration of photosensitizers (PS) in tumors. In this research, we developed a novel delivery system for PS, termed EWC, using the facultative probiotic <em>Escherichia coli Nissle</em> 1917 (EcN) as a carrier. Chlorin e6 (Ce6) was electrostatically adsorbed onto the surface of EcN with the assistance of water-soluble chitosan (WCS). EWC demonstrated effective photodynamic activity and was readily internalized by human lung cancer cells (A549). <em>In vitro</em> assays confirmed its low toxicity to mammalian cells and potent photodynamic cytotoxicity against A549 cells. Additionally, EWC penetrated tumor spheroids and inhibited their growth, as shown by 3D fluorescence imaging. <em>In vivo</em> tests revealed that EWC enhanced the distribution and accumulation of Ce6 at the tumor site, effectively inhibiting tumor growth under light stimulation. Moreover, EWC exhibited excellent biocompatibility in mice. This facultative probiotics-based delivery system significantly improves the efficiency of PDT, offering a promising approach for low-toxicity and high-efficiency tumor therapy.</div></div>","PeriodicalId":279,"journal":{"name":"Colloids and Surfaces B: Biointerfaces","volume":"246 ","pages":"Article 114372"},"PeriodicalIF":5.4000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloids and Surfaces B: Biointerfaces","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927776524006313","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Photodynamic therapy (PDT) is an emerging cancer therapy known for its non-invasive approach and minimal side effects. However, the clinical effectiveness of PDT is limited by the poor distribution and penetration of photosensitizers (PS) in tumors. In this research, we developed a novel delivery system for PS, termed EWC, using the facultative probiotic Escherichia coli Nissle 1917 (EcN) as a carrier. Chlorin e6 (Ce6) was electrostatically adsorbed onto the surface of EcN with the assistance of water-soluble chitosan (WCS). EWC demonstrated effective photodynamic activity and was readily internalized by human lung cancer cells (A549). In vitro assays confirmed its low toxicity to mammalian cells and potent photodynamic cytotoxicity against A549 cells. Additionally, EWC penetrated tumor spheroids and inhibited their growth, as shown by 3D fluorescence imaging. In vivo tests revealed that EWC enhanced the distribution and accumulation of Ce6 at the tumor site, effectively inhibiting tumor growth under light stimulation. Moreover, EWC exhibited excellent biocompatibility in mice. This facultative probiotics-based delivery system significantly improves the efficiency of PDT, offering a promising approach for low-toxicity and high-efficiency tumor therapy.
期刊介绍:
Colloids and Surfaces B: Biointerfaces is an international journal devoted to fundamental and applied research on colloid and interfacial phenomena in relation to systems of biological origin, having particular relevance to the medical, pharmaceutical, biotechnological, food and cosmetic fields.
Submissions that: (1) deal solely with biological phenomena and do not describe the physico-chemical or colloid-chemical background and/or mechanism of the phenomena, and (2) deal solely with colloid/interfacial phenomena and do not have appropriate biological content or relevance, are outside the scope of the journal and will not be considered for publication.
The journal publishes regular research papers, reviews, short communications and invited perspective articles, called BioInterface Perspectives. The BioInterface Perspective provide researchers the opportunity to review their own work, as well as provide insight into the work of others that inspired and influenced the author. Regular articles should have a maximum total length of 6,000 words. In addition, a (combined) maximum of 8 normal-sized figures and/or tables is allowed (so for instance 3 tables and 5 figures). For multiple-panel figures each set of two panels equates to one figure. Short communications should not exceed half of the above. It is required to give on the article cover page a short statistical summary of the article listing the total number of words and tables/figures.