Harnessing diurnal dynamics: Understanding the influence of light–dark cycle on algal-bacterial symbiotic system under aniline stress

IF 9.7 1区 环境科学与生态学 Q1 AGRICULTURAL ENGINEERING
Qi He , Qian Zhang , Meng Li , Jing He , Bing Lin , Nan-Ping Wu , Jia-Jing Chen , Xun-Hao Liu , Xiao-Qian Dong
{"title":"Harnessing diurnal dynamics: Understanding the influence of light–dark cycle on algal-bacterial symbiotic system under aniline stress","authors":"Qi He ,&nbsp;Qian Zhang ,&nbsp;Meng Li ,&nbsp;Jing He ,&nbsp;Bing Lin ,&nbsp;Nan-Ping Wu ,&nbsp;Jia-Jing Chen ,&nbsp;Xun-Hao Liu ,&nbsp;Xiao-Qian Dong","doi":"10.1016/j.biortech.2024.131796","DOIUrl":null,"url":null,"abstract":"<div><div>To assess the inherent effects of light–dark cycle on the aniline degradation and nitrogen removal in algal-bacterial symbiotic system, three groups with different photoperiods (0L:12D;6L:6D;12L:0D) were set up. The results revealed that the aniline degradation rate of the three systems all surpassed 99 %, the total nitrogen removal rate of Z2-6L:6D was approximately 36 % higher than Z1-0L:12D eventually, the Z1-0L:12D was restrained by NH<sub>4</sub><sup>+</sup>-N assimilation and nitrification while anoxic denitrification in Z3-12L:0D. The disappearance of microalgae biomass was accompanied by the sharp decreased of polysaccharide in Z1 and longer illumination suppressed the secretion of extracellular polymeric substances, the Z3 yielded slightly superior biomass production despite the double illumination compared with Z2. Moreover, high throughput sequencing analysis illustrated that the microbial community structure in Z2 was more abundant and even than Z3, the <em>TM7a</em>, <em>norank_f__norank_o__Saccharimonadales</em>, <em>Ellin6067</em> and <em>Scenedesmus</em> proliferated wildly and the photoinhibition to functional genus was effectively alleviated in Z2.</div></div>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":"416 ","pages":"Article 131796"},"PeriodicalIF":9.7000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960852424015001","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

To assess the inherent effects of light–dark cycle on the aniline degradation and nitrogen removal in algal-bacterial symbiotic system, three groups with different photoperiods (0L:12D;6L:6D;12L:0D) were set up. The results revealed that the aniline degradation rate of the three systems all surpassed 99 %, the total nitrogen removal rate of Z2-6L:6D was approximately 36 % higher than Z1-0L:12D eventually, the Z1-0L:12D was restrained by NH4+-N assimilation and nitrification while anoxic denitrification in Z3-12L:0D. The disappearance of microalgae biomass was accompanied by the sharp decreased of polysaccharide in Z1 and longer illumination suppressed the secretion of extracellular polymeric substances, the Z3 yielded slightly superior biomass production despite the double illumination compared with Z2. Moreover, high throughput sequencing analysis illustrated that the microbial community structure in Z2 was more abundant and even than Z3, the TM7a, norank_f__norank_o__Saccharimonadales, Ellin6067 and Scenedesmus proliferated wildly and the photoinhibition to functional genus was effectively alleviated in Z2.

Abstract Image

利用昼夜动态:了解苯胺胁迫下光暗周期对藻类-细菌共生系统的影响。
为了评估光-暗周期对藻类-细菌共生系统苯胺降解和脱氮的内在影响,建立了三组不同光周期(0L:12D;6L:6D;12L:0D)的藻类-细菌共生系统。结果表明,三个系统的苯胺降解率均超过 99%,Z2-6L:6D 的总氮去除率最终比 Z1-0L:12D 高出约 36%,Z1-0L:12D 受 NH4+-N 同化和硝化的抑制,而 Z3-12L:0D 则缺氧反硝化。微藻生物量的消失伴随着 Z1 中多糖含量的急剧下降,较长时间的光照抑制了胞外高分子物质的分泌,尽管双光照,Z3 的生物量产量仍略高于 Z2。此外,高通量测序分析表明,Z2 的微生物群落结构比 Z3 更加丰富和均匀,TM7a、norank__f__norank____Saccharimonadales、Ellin6067 和 Scenedesmus 在 Z2 中疯狂增殖,对功能属的光抑制在 Z2 中得到有效缓解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioresource Technology
Bioresource Technology 工程技术-能源与燃料
CiteScore
20.80
自引率
19.30%
发文量
2013
审稿时长
12 days
期刊介绍: Bioresource Technology publishes original articles, review articles, case studies, and short communications covering the fundamentals, applications, and management of bioresource technology. The journal seeks to advance and disseminate knowledge across various areas related to biomass, biological waste treatment, bioenergy, biotransformations, bioresource systems analysis, and associated conversion or production technologies. Topics include: • Biofuels: liquid and gaseous biofuels production, modeling and economics • Bioprocesses and bioproducts: biocatalysis and fermentations • Biomass and feedstocks utilization: bioconversion of agro-industrial residues • Environmental protection: biological waste treatment • Thermochemical conversion of biomass: combustion, pyrolysis, gasification, catalysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信