A comprehensive review on the application of neural network model in microbial fermentation

IF 9.7 1区 环境科学与生态学 Q1 AGRICULTURAL ENGINEERING
Jia-Cong Huang , Qi Guo , Xu-Hong Li, Tian-Qiong Shi
{"title":"A comprehensive review on the application of neural network model in microbial fermentation","authors":"Jia-Cong Huang ,&nbsp;Qi Guo ,&nbsp;Xu-Hong Li,&nbsp;Tian-Qiong Shi","doi":"10.1016/j.biortech.2024.131801","DOIUrl":null,"url":null,"abstract":"<div><div>The development of high-performance strains and the continuous breakthrough of strain screening technology also pose challenges to downstream fermentation optimization and scale-up. Therefore, neural network models are utilized to optimize the fermentation process to meet the goals of boosting yield or lowering cost, with the use of artificial intelligence technology in conjunction with the peculiarities of the fermentation process. High-performance strains’ yield rise and fermentation process amplification will be sped up with the aid of neural network models. This paper offers a helpful review for anyone interested in state-of-the-art microbial fermentation processes, as it thoroughly reviews the application of neural network models in predicting fermentation yield, optimizing the fermentation process, and monitoring the fermentation process.</div></div>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":"416 ","pages":"Article 131801"},"PeriodicalIF":9.7000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960852424015050","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

The development of high-performance strains and the continuous breakthrough of strain screening technology also pose challenges to downstream fermentation optimization and scale-up. Therefore, neural network models are utilized to optimize the fermentation process to meet the goals of boosting yield or lowering cost, with the use of artificial intelligence technology in conjunction with the peculiarities of the fermentation process. High-performance strains’ yield rise and fermentation process amplification will be sped up with the aid of neural network models. This paper offers a helpful review for anyone interested in state-of-the-art microbial fermentation processes, as it thoroughly reviews the application of neural network models in predicting fermentation yield, optimizing the fermentation process, and monitoring the fermentation process.

Abstract Image

神经网络模型在微生物发酵中的应用综述。
高性能菌种的开发和菌种筛选技术的不断突破,也给下游发酵的优化和规模化带来了挑战。因此,利用人工智能技术,结合发酵工艺的特殊性,利用神经网络模型对发酵工艺进行优化,以达到提高产量或降低成本的目的。在神经网络模型的帮助下,高性能菌株的产量提高和发酵过程放大的速度将加快。本文全面回顾了神经网络模型在预测发酵产量、优化发酵过程和监控发酵过程中的应用,为任何对最先进的微生物发酵过程感兴趣的人提供了有益的综述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioresource Technology
Bioresource Technology 工程技术-能源与燃料
CiteScore
20.80
自引率
19.30%
发文量
2013
审稿时长
12 days
期刊介绍: Bioresource Technology publishes original articles, review articles, case studies, and short communications covering the fundamentals, applications, and management of bioresource technology. The journal seeks to advance and disseminate knowledge across various areas related to biomass, biological waste treatment, bioenergy, biotransformations, bioresource systems analysis, and associated conversion or production technologies. Topics include: • Biofuels: liquid and gaseous biofuels production, modeling and economics • Bioprocesses and bioproducts: biocatalysis and fermentations • Biomass and feedstocks utilization: bioconversion of agro-industrial residues • Environmental protection: biological waste treatment • Thermochemical conversion of biomass: combustion, pyrolysis, gasification, catalysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信