Synchronised removal of nitrogen and sulphate from rubber industrial wastewater by coupling of Sulfammox and sulphide-driven autotrophic denitrification in anaerobic membrane bioreactor.
{"title":"Synchronised removal of nitrogen and sulphate from rubber industrial wastewater by coupling of Sulfammox and sulphide-driven autotrophic denitrification in anaerobic membrane bioreactor.","authors":"Ishanka Wimalaweera, Fumin Zuo, Qihe Tang, Qianwen Sui, Shameen Jinadasa, Sujithra Weragoda, Tharindu Ritigala, Rohan Weerasooriya, Yawei Wang, Hui Zhong, Madhubhashini Makehelwala, Yuansong Wei","doi":"10.1016/j.biortech.2024.131785","DOIUrl":null,"url":null,"abstract":"<p><p>Global rubber industry, growing 4-6 % annually with 13.76 million Mt of rubber produced in 2019, significantly impacts the economy. This study explores coupling sulfate-dependent ammonium oxidation (Sulfammox) and sulfide-driven autotrophic denitrification (SDAD) within an anaerobic membrane bioreactor (AnMBR) to treat high-strength natural rubber wastewater. Over 225 days, the AnMBR system achieved maximal chemical oxygen demand (COD), total nitrogen (TN), ammonium nitrogen (NH<sub>4</sub><sup>+</sup>-N), and sulfate sulfur (SO<sub>4</sub><sup>2-</sup>-S) removal efficiencies of 58 %, 31 %, 13 %, and 45 %, respectively. TN is predominantly removed through Sulfammox (accounting for 49 % of NH<sub>4</sub><sup>+</sup>-N removal), SDAD, and conventional denitrification pathways. Sulfate removal is achieved via Sulfammox (responsible for 43 % of SO<sub>4</sub><sup>2-</sup>-S removal), and Dissimilatory sulfate-reducing (DSR) processes (contributing 57 % of SO<sub>4</sub><sup>2-</sup>-S removal). Microbial analysis identified Desulfovibrio and Sulfurospirillum as key microbes, while metagenomic analysis highlighted crucial sulfur and nitrogen cycling pathways. The findings support Sulfammox and SDAD as promising eco-friendly strategies for treating ammonia- and sulfate-rich industrial wastewater.</p>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":" ","pages":"131785"},"PeriodicalIF":9.7000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.biortech.2024.131785","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Global rubber industry, growing 4-6 % annually with 13.76 million Mt of rubber produced in 2019, significantly impacts the economy. This study explores coupling sulfate-dependent ammonium oxidation (Sulfammox) and sulfide-driven autotrophic denitrification (SDAD) within an anaerobic membrane bioreactor (AnMBR) to treat high-strength natural rubber wastewater. Over 225 days, the AnMBR system achieved maximal chemical oxygen demand (COD), total nitrogen (TN), ammonium nitrogen (NH4+-N), and sulfate sulfur (SO42--S) removal efficiencies of 58 %, 31 %, 13 %, and 45 %, respectively. TN is predominantly removed through Sulfammox (accounting for 49 % of NH4+-N removal), SDAD, and conventional denitrification pathways. Sulfate removal is achieved via Sulfammox (responsible for 43 % of SO42--S removal), and Dissimilatory sulfate-reducing (DSR) processes (contributing 57 % of SO42--S removal). Microbial analysis identified Desulfovibrio and Sulfurospirillum as key microbes, while metagenomic analysis highlighted crucial sulfur and nitrogen cycling pathways. The findings support Sulfammox and SDAD as promising eco-friendly strategies for treating ammonia- and sulfate-rich industrial wastewater.
期刊介绍:
Bioresource Technology publishes original articles, review articles, case studies, and short communications covering the fundamentals, applications, and management of bioresource technology. The journal seeks to advance and disseminate knowledge across various areas related to biomass, biological waste treatment, bioenergy, biotransformations, bioresource systems analysis, and associated conversion or production technologies.
Topics include:
• Biofuels: liquid and gaseous biofuels production, modeling and economics
• Bioprocesses and bioproducts: biocatalysis and fermentations
• Biomass and feedstocks utilization: bioconversion of agro-industrial residues
• Environmental protection: biological waste treatment
• Thermochemical conversion of biomass: combustion, pyrolysis, gasification, catalysis.