Ming Yang, Yimin Jiang, Chung-Li Dong, Leitao Xu, Yutong Huang, Shifan Leng, Yandong Wu, Yongxiang Luo, Wei Chen, Ta Thi Thuy Nga, Shuangyin Wang, Yuqin Zou
{"title":"A self-reactivated PdCu catalyst for aldehyde electro-oxidation with anodic hydrogen production","authors":"Ming Yang, Yimin Jiang, Chung-Li Dong, Leitao Xu, Yutong Huang, Shifan Leng, Yandong Wu, Yongxiang Luo, Wei Chen, Ta Thi Thuy Nga, Shuangyin Wang, Yuqin Zou","doi":"10.1038/s41467-024-54286-y","DOIUrl":null,"url":null,"abstract":"<p>The low-potential aldehyde oxidation reaction can occur at low potential (~0 V<sub>RHE</sub>) and release H<sub>2</sub> at the anode, enabling hydrogen production with less than one-tenth of the energy consumption required for water splitting. Nevertheless, the activity and stability of Cu catalysts remain inadequate due to the oxidative deactivation of Cu-based materials. Herein, we elucidate the deactivation and reactivation cycle of Cu electrocatalyst and develop a self-reactivating PdCu catalyst that exhibits significantly enhanced stability. Initially, in-situ Raman spectroscopy confirm the cycle involved in electrochemical oxidation and non-electrochemical reduction. Subsequently, in-situ Raman spectroscopy and X-ray absorption fine structure reveal that the Pd component accelerates the rate of the non-electrochemical reduction, thereby enhancing the stability of the Cu-based electrocatalyst. Finally, a bipolar hydrogen production device is assembled utilizing the PdCu electrocatalyst, which can deliver a current of 400 mA cm<sup>−2</sup> at 0.42 V and operate continuously for 120 h. This work offers guidance to enhance the stability of the Cu-based electrocatalyst in a bipolar hydrogen production system.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":null,"pages":null},"PeriodicalIF":14.7000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-54286-y","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The low-potential aldehyde oxidation reaction can occur at low potential (~0 VRHE) and release H2 at the anode, enabling hydrogen production with less than one-tenth of the energy consumption required for water splitting. Nevertheless, the activity and stability of Cu catalysts remain inadequate due to the oxidative deactivation of Cu-based materials. Herein, we elucidate the deactivation and reactivation cycle of Cu electrocatalyst and develop a self-reactivating PdCu catalyst that exhibits significantly enhanced stability. Initially, in-situ Raman spectroscopy confirm the cycle involved in electrochemical oxidation and non-electrochemical reduction. Subsequently, in-situ Raman spectroscopy and X-ray absorption fine structure reveal that the Pd component accelerates the rate of the non-electrochemical reduction, thereby enhancing the stability of the Cu-based electrocatalyst. Finally, a bipolar hydrogen production device is assembled utilizing the PdCu electrocatalyst, which can deliver a current of 400 mA cm−2 at 0.42 V and operate continuously for 120 h. This work offers guidance to enhance the stability of the Cu-based electrocatalyst in a bipolar hydrogen production system.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.