Mengwei Li, Kok Siong Ang, Brian Teo, Uddamvathanak Rom, Minh N Nguyen, Sebastian Maurer-Stroh, Jinmiao Chen
{"title":"Rediscovering publicly available single-cell data with the DISCO platform","authors":"Mengwei Li, Kok Siong Ang, Brian Teo, Uddamvathanak Rom, Minh N Nguyen, Sebastian Maurer-Stroh, Jinmiao Chen","doi":"10.1093/nar/gkae1108","DOIUrl":null,"url":null,"abstract":"Single-cell RNA sequencing (scRNA-seq) has emerged as the key technique for studying transcriptomics at the single-cell level. In our previous work, we presented the DISCO database (https://www.immunesinglecell.org/) that integrates publicly available human scRNA-seq data. We now introduce an enhanced version of DISCO, which has expanded fourfold to include >100 million cells from >17 thousand samples. It provides uniformly realigned read count tables, curated metadata, integrated tissue and phenotype specific atlases, and harmonized cell type annotations. It also hosts a single-cell enhanced knowledgebase of cell type ontology and gene signatures relating to cell types and phenotypes. Lastly, it offers a suite of tools for data retrieval, integration, annotation, and mapping, allowing users to construct customized atlases and perform integrated analysis with their own data. These tools are also available in a standalone R package for offline analysis.","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":"7 1","pages":""},"PeriodicalIF":16.6000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic Acids Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/nar/gkae1108","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Single-cell RNA sequencing (scRNA-seq) has emerged as the key technique for studying transcriptomics at the single-cell level. In our previous work, we presented the DISCO database (https://www.immunesinglecell.org/) that integrates publicly available human scRNA-seq data. We now introduce an enhanced version of DISCO, which has expanded fourfold to include >100 million cells from >17 thousand samples. It provides uniformly realigned read count tables, curated metadata, integrated tissue and phenotype specific atlases, and harmonized cell type annotations. It also hosts a single-cell enhanced knowledgebase of cell type ontology and gene signatures relating to cell types and phenotypes. Lastly, it offers a suite of tools for data retrieval, integration, annotation, and mapping, allowing users to construct customized atlases and perform integrated analysis with their own data. These tools are also available in a standalone R package for offline analysis.
期刊介绍:
Nucleic Acids Research (NAR) is a scientific journal that publishes research on various aspects of nucleic acids and proteins involved in nucleic acid metabolism and interactions. It covers areas such as chemistry and synthetic biology, computational biology, gene regulation, chromatin and epigenetics, genome integrity, repair and replication, genomics, molecular biology, nucleic acid enzymes, RNA, and structural biology. The journal also includes a Survey and Summary section for brief reviews. Additionally, each year, the first issue is dedicated to biological databases, and an issue in July focuses on web-based software resources for the biological community. Nucleic Acids Research is indexed by several services including Abstracts on Hygiene and Communicable Diseases, Animal Breeding Abstracts, Agricultural Engineering Abstracts, Agbiotech News and Information, BIOSIS Previews, CAB Abstracts, and EMBASE.