The ribosome comes to life

IF 5.7 1区 化学 Q2 CHEMISTRY, PHYSICAL
Harry F. Noller
{"title":"The ribosome comes to life","authors":"Harry F. Noller","doi":"10.1016/j.cell.2024.10.035","DOIUrl":null,"url":null,"abstract":"The ribosome, together with its tRNA substrates, links genotype to phenotype by translating the genetic information carried by mRNA into protein. During the past half-century, the structure and mechanisms of action of the ribosome have emerged from mystery and confusion. It is now evident that the ribosome is an ancient RNA-based molecular machine of staggering structural complexity and that it is fundamentally similar in all living organisms. The three central functions of protein synthesis—decoding, catalysis of peptide bond formation, and translocation of mRNA and tRNA—are based on elegant mechanisms that evolved from the properties of RNA, the founding macromolecule of life. Moreover, all three of these functions (and even life itself) seem to proceed in defiance of entropy. Protein synthesis thus appears to exploit both the energy of GTP hydrolysis and peptide bond formation to constrain the directionality and accuracy of events taking place on the ribosome.","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":"10 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cell.2024.10.035","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The ribosome, together with its tRNA substrates, links genotype to phenotype by translating the genetic information carried by mRNA into protein. During the past half-century, the structure and mechanisms of action of the ribosome have emerged from mystery and confusion. It is now evident that the ribosome is an ancient RNA-based molecular machine of staggering structural complexity and that it is fundamentally similar in all living organisms. The three central functions of protein synthesis—decoding, catalysis of peptide bond formation, and translocation of mRNA and tRNA—are based on elegant mechanisms that evolved from the properties of RNA, the founding macromolecule of life. Moreover, all three of these functions (and even life itself) seem to proceed in defiance of entropy. Protein synthesis thus appears to exploit both the energy of GTP hydrolysis and peptide bond formation to constrain the directionality and accuracy of events taking place on the ribosome.
核糖体焕发生机
核糖体及其 tRNA 底物将 mRNA 所携带的遗传信息转化为蛋白质,从而将基因型与表型联系起来。在过去的半个世纪里,核糖体的结构和作用机理已经从神秘和混乱中走了出来。现在我们可以清楚地看到,核糖体是一种古老的以 RNA 为基础的分子机器,其结构的复杂程度令人吃惊,而且它在所有生物体中都基本相似。蛋白质合成的三大核心功能--解码、肽键形成催化以及 mRNA 和 tRNA 的转运--都是基于优雅的机制,这些机制是从生命的基础大分子 RNA 的特性中演化而来的。此外,所有这三种功能(甚至生命本身)似乎都是在熵的作用下进行的。因此,蛋白质合成似乎利用了 GTP 水解和肽键形成的能量来限制核糖体上发生的事件的方向性和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Chemical Theory and Computation
Journal of Chemical Theory and Computation 化学-物理:原子、分子和化学物理
CiteScore
9.90
自引率
16.40%
发文量
568
审稿时长
1 months
期刊介绍: The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信