Xuehang Meng, Yujia Du, Chang Liu, Zhaoyu Zhai, Jianbo Pan
{"title":"GTO: a comprehensive gene therapy omnibus","authors":"Xuehang Meng, Yujia Du, Chang Liu, Zhaoyu Zhai, Jianbo Pan","doi":"10.1093/nar/gkae1051","DOIUrl":null,"url":null,"abstract":"Gene therapy, which involves the delivery of genetic material into cells to correct an underlying genetic problem, has emerged as a promising approach for treating various conditions. To promote research in this rapidly evolving field, we developed the Gene Therapy Omnibus (GTO) (http://www.inbirg.com/gto/), a comprehensive resource containing detailed clinical trial data and molecular information related to gene therapy. The GTO includes 6333 clinical trial records and 3466 transcriptome profiles, with information on 614 altered genes and 22 types of gene therapy, including DNA therapies, RNA therapies and genetically-modified cell therapies. For each gene therapy product in a clinical trial, detailed information, such as altered gene name, structural components, indication, vector information, phase of the clinical trial, clinical outcomes and adverse effects, is provided when available. Additionally, 345 comparison datasets, including 29 single-cell RNA-sequencing datasets comprising information on both gene therapy and control samples, were established. Differential gene expression and downstream functional enrichment analyses were performed through standardized pipelines to elucidate the molecular alterations induced by gene therapy. The user-friendly interface of the GTO supports efficient data retrieval, visualization and analysis, making it an invaluable resource for researchers and clinicians performing clinical research on gene therapy and the underlying mechanisms.","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":"17 1","pages":""},"PeriodicalIF":16.6000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic Acids Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/nar/gkae1051","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Gene therapy, which involves the delivery of genetic material into cells to correct an underlying genetic problem, has emerged as a promising approach for treating various conditions. To promote research in this rapidly evolving field, we developed the Gene Therapy Omnibus (GTO) (http://www.inbirg.com/gto/), a comprehensive resource containing detailed clinical trial data and molecular information related to gene therapy. The GTO includes 6333 clinical trial records and 3466 transcriptome profiles, with information on 614 altered genes and 22 types of gene therapy, including DNA therapies, RNA therapies and genetically-modified cell therapies. For each gene therapy product in a clinical trial, detailed information, such as altered gene name, structural components, indication, vector information, phase of the clinical trial, clinical outcomes and adverse effects, is provided when available. Additionally, 345 comparison datasets, including 29 single-cell RNA-sequencing datasets comprising information on both gene therapy and control samples, were established. Differential gene expression and downstream functional enrichment analyses were performed through standardized pipelines to elucidate the molecular alterations induced by gene therapy. The user-friendly interface of the GTO supports efficient data retrieval, visualization and analysis, making it an invaluable resource for researchers and clinicians performing clinical research on gene therapy and the underlying mechanisms.
期刊介绍:
Nucleic Acids Research (NAR) is a scientific journal that publishes research on various aspects of nucleic acids and proteins involved in nucleic acid metabolism and interactions. It covers areas such as chemistry and synthetic biology, computational biology, gene regulation, chromatin and epigenetics, genome integrity, repair and replication, genomics, molecular biology, nucleic acid enzymes, RNA, and structural biology. The journal also includes a Survey and Summary section for brief reviews. Additionally, each year, the first issue is dedicated to biological databases, and an issue in July focuses on web-based software resources for the biological community. Nucleic Acids Research is indexed by several services including Abstracts on Hygiene and Communicable Diseases, Animal Breeding Abstracts, Agricultural Engineering Abstracts, Agbiotech News and Information, BIOSIS Previews, CAB Abstracts, and EMBASE.