Enhanced Sludge Dewaterability and Confined Antibiotics Degradation in Biochar-Mediated Chemical Conditioning through Modulating Fe Oxidative States Distribution and Reaction sites in Multiphase
{"title":"Enhanced Sludge Dewaterability and Confined Antibiotics Degradation in Biochar-Mediated Chemical Conditioning through Modulating Fe Oxidative States Distribution and Reaction sites in Multiphase","authors":"Siqi Wang, Fang Luo, Lingzhi He, Zhuo Liu, Jia Wang, Zhuwei Liao, Huijie Hou, Junwen Li, Xiaohan Ning, Zhuqi Chen","doi":"10.1016/j.watres.2024.122789","DOIUrl":null,"url":null,"abstract":"For antibiotic-enriched waste activated sludge, classical iron-based chemical conditioning significantly enhanced sludge dewaterability. Nevertheless, the intricate constituents within sludge rapidly depleted reactive oxygen species (ROS), leading to challenges such as excessive production of iron sludge and inadequate elimination of antibiotics from sludge. Herein, we proposed an innovative strategy integrating biochar with Fe(II) for peroxymonosulfate (PMS) activation, aiming to enhance both sludge dewaterability and antibiotics elimination simultaneously. Compared to classical chemical conditioning of Fe(II)/PMS, the presence of biochar not only reduced bound water content of sludge from 1.36 g/g DS to 0.97 g/g DS, but also enhanced sulfamethoxazole (SMX) degradation rate constant from 0.015 min<sup>-1</sup> to 0.042 min<sup>-1</sup>. Mechanism studies disclosed the essential roles of biochar in modulating Fe oxidative states distribution and reaction sites in multiphase. Initially, biochar elevated Fe(II)/Fe(III) ratio from 0.38 to 0.78 by abundant carbon defects, which significantly promoted the cumulative concentration of predominant ROS, hydroxyl radicals (•OH), from 4.6 mM to 8.1 mM. Subsequently, EPS underwent destruction by •OH, leading to the liberation of antibiotics and negatively charged polysaccharides (PS), proteins (PN). Secondly, biochar enriched hydrophobic PN with an elevated ratio of PN/PS from 0.92 to 1.50, while the charge neutralization occurred between Fe(II)/Fe(III) and PN, PS, leading to sludge particles granulation. Finally, the mesoporous structure of biochar not only achieved SMX enrichment, but also enhanced the mass transfer of Fe(II)/Fe(III) from sludge aqueous phase to its surface, ensuring that the in-situ generated •OH efficiently targets the locally concentrated SMX. Overall, this work provides a new guidance for developing biochar-mediated chemical conditioning, aiming to enhance the generation and utilization of •OH for antibiotics elimination from sludge.","PeriodicalId":443,"journal":{"name":"Water Research","volume":null,"pages":null},"PeriodicalIF":11.4000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.watres.2024.122789","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
For antibiotic-enriched waste activated sludge, classical iron-based chemical conditioning significantly enhanced sludge dewaterability. Nevertheless, the intricate constituents within sludge rapidly depleted reactive oxygen species (ROS), leading to challenges such as excessive production of iron sludge and inadequate elimination of antibiotics from sludge. Herein, we proposed an innovative strategy integrating biochar with Fe(II) for peroxymonosulfate (PMS) activation, aiming to enhance both sludge dewaterability and antibiotics elimination simultaneously. Compared to classical chemical conditioning of Fe(II)/PMS, the presence of biochar not only reduced bound water content of sludge from 1.36 g/g DS to 0.97 g/g DS, but also enhanced sulfamethoxazole (SMX) degradation rate constant from 0.015 min-1 to 0.042 min-1. Mechanism studies disclosed the essential roles of biochar in modulating Fe oxidative states distribution and reaction sites in multiphase. Initially, biochar elevated Fe(II)/Fe(III) ratio from 0.38 to 0.78 by abundant carbon defects, which significantly promoted the cumulative concentration of predominant ROS, hydroxyl radicals (•OH), from 4.6 mM to 8.1 mM. Subsequently, EPS underwent destruction by •OH, leading to the liberation of antibiotics and negatively charged polysaccharides (PS), proteins (PN). Secondly, biochar enriched hydrophobic PN with an elevated ratio of PN/PS from 0.92 to 1.50, while the charge neutralization occurred between Fe(II)/Fe(III) and PN, PS, leading to sludge particles granulation. Finally, the mesoporous structure of biochar not only achieved SMX enrichment, but also enhanced the mass transfer of Fe(II)/Fe(III) from sludge aqueous phase to its surface, ensuring that the in-situ generated •OH efficiently targets the locally concentrated SMX. Overall, this work provides a new guidance for developing biochar-mediated chemical conditioning, aiming to enhance the generation and utilization of •OH for antibiotics elimination from sludge.
期刊介绍:
Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include:
•Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management;
•Urban hydrology including sewer systems, stormwater management, and green infrastructure;
•Drinking water treatment and distribution;
•Potable and non-potable water reuse;
•Sanitation, public health, and risk assessment;
•Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions;
•Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment;
•Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution;
•Environmental restoration, linked to surface water, groundwater and groundwater remediation;
•Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts;
•Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle;
•Socio-economic, policy, and regulations studies.