High-Quality Subsurface Construction of Perovskite Film for Efficient and Stable Solar Cells

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2024-11-13 DOI:10.1002/smll.202406386
Qinhui Bao, Chuwu Xing, Miao He, Zhiwei Nie, Rihua Wang, Chunsheng Wan, Tianjin Zhang, Duofa Wang
{"title":"High-Quality Subsurface Construction of Perovskite Film for Efficient and Stable Solar Cells","authors":"Qinhui Bao, Chuwu Xing, Miao He, Zhiwei Nie, Rihua Wang, Chunsheng Wan, Tianjin Zhang, Duofa Wang","doi":"10.1002/smll.202406386","DOIUrl":null,"url":null,"abstract":"The subsurface of perovskite (PVK) triggers non-radiative recombination and initiates film degradation due to the impurities and defects. This study investigates the limitations of the conventional surface post-treatment and proposes an innovative pre-treatment strategy to achieve complete impurity elimination and defect passivation of the subsurface. The considerable activity of unannealed PVK films provides a sufficient basis for effective subsurface modification. Following the pre-treatment, the cadmium ions (Cd<sup>2+</sup>) can occupy the lead (Pb) vacancies or substitute lead ions(Pb<sup>2+</sup>), while the introduced ionic ions (I<sup>-</sup>) are able to fill the ionic (I) vacancies. The stronger ionic bond between Cd<sup>2+</sup> and I<sup>−</sup> helps prevent the loss of I<sup>-</sup>, leading to a reduction of defects in film, inhibiting non-radiative recombination and ionic migration at the interface. This innovative strategy successfully eliminates impurities and passivates defects, resulting in a perovskite subsurface characterized by high crystallinity, low defect density, and minimal impurity. These enhancements contribute to enhanced open circuit voltage (V<sub>OC</sub>)and fill factor (FF), leading to an impressive power conversion efficiency (PCE) of 24.49%. Notably, after 1600 h of aging in ambient air, the cell retained 87% of its initial performance.","PeriodicalId":228,"journal":{"name":"Small","volume":"17 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202406386","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The subsurface of perovskite (PVK) triggers non-radiative recombination and initiates film degradation due to the impurities and defects. This study investigates the limitations of the conventional surface post-treatment and proposes an innovative pre-treatment strategy to achieve complete impurity elimination and defect passivation of the subsurface. The considerable activity of unannealed PVK films provides a sufficient basis for effective subsurface modification. Following the pre-treatment, the cadmium ions (Cd2+) can occupy the lead (Pb) vacancies or substitute lead ions(Pb2+), while the introduced ionic ions (I-) are able to fill the ionic (I) vacancies. The stronger ionic bond between Cd2+ and I helps prevent the loss of I-, leading to a reduction of defects in film, inhibiting non-radiative recombination and ionic migration at the interface. This innovative strategy successfully eliminates impurities and passivates defects, resulting in a perovskite subsurface characterized by high crystallinity, low defect density, and minimal impurity. These enhancements contribute to enhanced open circuit voltage (VOC)and fill factor (FF), leading to an impressive power conversion efficiency (PCE) of 24.49%. Notably, after 1600 h of aging in ambient air, the cell retained 87% of its initial performance.

Abstract Image

用于高效稳定太阳能电池的高质量过氧化物薄膜表层下结构
由于杂质和缺陷的存在,过氧化物晶(PVK)的次表面会引发非辐射性重组并导致薄膜降解。本研究调查了传统表面后处理的局限性,并提出了一种创新的预处理策略,以实现杂质的彻底清除和次表面缺陷的钝化。未退火的 PVK 薄膜具有相当高的活性,这为有效的次表面改性提供了充分的基础。经过预处理后,镉离子(Cd2+)可以占据铅(Pb)空位或替代铅离子(Pb2+),而引入的离子离子(I-)则可以填补离子(I)空位。Cd2+ 和 I- 之间更强的离子键有助于防止 I- 的流失,从而减少薄膜中的缺陷,抑制界面上的非辐射重组和离子迁移。这种创新策略成功地消除了杂质并钝化了缺陷,从而形成了具有高结晶度、低缺陷密度和最小杂质的过氧化物亚表面。这些改进有助于提高开路电压(VOC)和填充因子(FF),使功率转换效率(PCE)达到惊人的 24.49%。值得注意的是,在环境空气中老化 1600 小时后,该电池仍保持了 87% 的初始性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信