Minqiang Zhou, Bavo Langerock, Corinne Vigouroux, Dan Smale, Geoff Toon, Alexander Polyakov, James W. Hannigan, Johan Mellqvist, John Robinson, Justus Notholt, Kimberly Strong, Emmanuel Mahieu, Mathias Palm, Maxime Prignon, Nicolas Jones, Omaira García, Isamu Morino, Isao Murata, Ivan Ortega, Tomoo Nagahama, Tyler Wizenberg, Victoria Flood, Kaley Walker, Martine De Mazière
{"title":"Recent Decreases in the Growth Rate of Atmospheric HCFC-22 Column Derived From the Ground-Based FTIR Harmonized Retrievals at 16 NDACC Sites","authors":"Minqiang Zhou, Bavo Langerock, Corinne Vigouroux, Dan Smale, Geoff Toon, Alexander Polyakov, James W. Hannigan, Johan Mellqvist, John Robinson, Justus Notholt, Kimberly Strong, Emmanuel Mahieu, Mathias Palm, Maxime Prignon, Nicolas Jones, Omaira García, Isamu Morino, Isao Murata, Ivan Ortega, Tomoo Nagahama, Tyler Wizenberg, Victoria Flood, Kaley Walker, Martine De Mazière","doi":"10.1029/2024GL112470","DOIUrl":null,"url":null,"abstract":"<p>HCFC-22 is an ozone-depleting substance with a greenhouse effect. The atmospheric mole fractions of HCFC-22 have been increasing since the 1950s. Within the NDACC-IRWG network, HCFC-22 mol fractions can be retrieved from solar absorption spectra measured by ground-based FTIR. However, only a few sites have provided HCFC-22 data sets. Here, we demonstrate a harmonized FTIR HCFC-22 retrieval strategy and generate a new global NDACC-IRWG HCFC-22 data set at 16 FTIR sites. The systematic and random uncertainties are 5.3%–8.7% and 3.2%–8.0%, respectively. A maximum HCFC-22 column annual growth rate was observed in 2009 with a mean of 7.65 ± 1.39 ppt/year, and the HCFC-22 annual growth rate decreased to 3.57 ± 1.39 ppt/year (2016–2020) and 2.15 ± 2.09 ppt/year (2021–2023). The annual growth rates derived from the FTIR measurements are compared to the ones derived from NOAA surface flask samplings and ACE-FTS satellite measurements, and the three independent data sets show a good agreement.</p>","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":"51 22","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GL112470","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Research Letters","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024GL112470","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
HCFC-22 is an ozone-depleting substance with a greenhouse effect. The atmospheric mole fractions of HCFC-22 have been increasing since the 1950s. Within the NDACC-IRWG network, HCFC-22 mol fractions can be retrieved from solar absorption spectra measured by ground-based FTIR. However, only a few sites have provided HCFC-22 data sets. Here, we demonstrate a harmonized FTIR HCFC-22 retrieval strategy and generate a new global NDACC-IRWG HCFC-22 data set at 16 FTIR sites. The systematic and random uncertainties are 5.3%–8.7% and 3.2%–8.0%, respectively. A maximum HCFC-22 column annual growth rate was observed in 2009 with a mean of 7.65 ± 1.39 ppt/year, and the HCFC-22 annual growth rate decreased to 3.57 ± 1.39 ppt/year (2016–2020) and 2.15 ± 2.09 ppt/year (2021–2023). The annual growth rates derived from the FTIR measurements are compared to the ones derived from NOAA surface flask samplings and ACE-FTS satellite measurements, and the three independent data sets show a good agreement.
期刊介绍:
Geophysical Research Letters (GRL) publishes high-impact, innovative, and timely research on major scientific advances in all the major geoscience disciplines. Papers are communications-length articles and should have broad and immediate implications in their discipline or across the geosciences. GRLmaintains the fastest turn-around of all high-impact publications in the geosciences and works closely with authors to ensure broad visibility of top papers.