{"title":"Anisotropic Heat Transfer in a Fibrous Membrane with Hierarchically Assembled 2D Materials","authors":"Yu Du, Fangzheng Zhen, Siyuan Ding, Yueni Zhong, Peixuan Li, Ke Zhan, Miheng Dong, Zhijun Guo, Weiren Fan, Ooi Ean Hin, Baofu Ding, Ruiping Zou, Ling Qiu, Aibing Yu, Minsu Liu","doi":"10.1021/acsami.4c15588","DOIUrl":null,"url":null,"abstract":"Effective heat redistribution in specific directions is vital for advanced thermal management, significantly enhancing device performance by optimizing spatial heat configurations. We have designed and fabricated a hierarchical fibrous membrane that enables precise heat directing. By integrating hierarchical structure design with the anisotropic thermal conductivity of two-dimensional (2D) materials, we developed a fibrous membrane for anisotropic heat transfer. Such a structure is fabricated by aligning a 1D structured fiber in the 2D plane to achieve anisotropy at each scale level. The fiber units, where 2D nanosheets circumferentially and axially aligned, achieved a high axial thermal conductivity of 16.8 W·m<sup>–1</sup>·K<sup>–1</sup> and advanced heat directing ability, confirmed by characterizations and simulations. The assembled membrane demonstrated an exceptional tensile strength (365 MPa) and high thermal conductivity (10.5 W·m<sup>–1</sup>·K<sup>–1</sup>) along the fiber axis. Our membranes are seen as a refined model for thermal management materials, combining the benefits of heat spreaders and thermal interface materials, thus being proficient in directing heat along programmed pathways. A practical wireless charging cooling demonstration illustrated this. Our methodology also proved versatile with different 2D fillers and various geometries. This research presents a method to achieve precise heat directing at the material’s level, facilitating the systematic design of thermal management in electronics.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c15588","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Effective heat redistribution in specific directions is vital for advanced thermal management, significantly enhancing device performance by optimizing spatial heat configurations. We have designed and fabricated a hierarchical fibrous membrane that enables precise heat directing. By integrating hierarchical structure design with the anisotropic thermal conductivity of two-dimensional (2D) materials, we developed a fibrous membrane for anisotropic heat transfer. Such a structure is fabricated by aligning a 1D structured fiber in the 2D plane to achieve anisotropy at each scale level. The fiber units, where 2D nanosheets circumferentially and axially aligned, achieved a high axial thermal conductivity of 16.8 W·m–1·K–1 and advanced heat directing ability, confirmed by characterizations and simulations. The assembled membrane demonstrated an exceptional tensile strength (365 MPa) and high thermal conductivity (10.5 W·m–1·K–1) along the fiber axis. Our membranes are seen as a refined model for thermal management materials, combining the benefits of heat spreaders and thermal interface materials, thus being proficient in directing heat along programmed pathways. A practical wireless charging cooling demonstration illustrated this. Our methodology also proved versatile with different 2D fillers and various geometries. This research presents a method to achieve precise heat directing at the material’s level, facilitating the systematic design of thermal management in electronics.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.