Muhammad Muzakir, Karnan Manickavasakam, Eric Jianfeng Cheng, Fangling Yang, Ziyun Wang, Hao Li, Xinyu Zhang, Jiaqian Qin
{"title":"Inorganic solid electrolytes for all-solid-state sodium/lithium-ion batteries: recent development and applications","authors":"Muhammad Muzakir, Karnan Manickavasakam, Eric Jianfeng Cheng, Fangling Yang, Ziyun Wang, Hao Li, Xinyu Zhang, Jiaqian Qin","doi":"10.1039/d4ta06117a","DOIUrl":null,"url":null,"abstract":"The development of fast synthesis methods and accurate engineering of the shapes and characteristics of inorganic solid electrolytes has been substantially aided by the advancement of science and technology in electrolyte engineering. The goal of this development is to meet the strict requirements for high-performance ASSBs, or all-solid-state batteries. The synthesis methods and electrochemical characteristics of inorganic solid electrolytes (ISEs), such as NASICON-based oxide, sulfide, hydroborate, anti-perovskite, and halide, as well as their uses in ASSBs, are covered in this review along with recent discoveries. ASSB problems, such as poor ISE-electrode compatibility and the potential for adverse reactions at the electrode interface, may be resolved by using ISEs in composite cathodes and solid interface layers. This illustrates the variety of applications for the ISEs class in the creation of complex ASSB models. In conclusion, we showcase existing ASSB models and forthcoming tactics to advance the advancement of ASSB development for the next generation.","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":"22 1","pages":""},"PeriodicalIF":12.7000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Central Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4ta06117a","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The development of fast synthesis methods and accurate engineering of the shapes and characteristics of inorganic solid electrolytes has been substantially aided by the advancement of science and technology in electrolyte engineering. The goal of this development is to meet the strict requirements for high-performance ASSBs, or all-solid-state batteries. The synthesis methods and electrochemical characteristics of inorganic solid electrolytes (ISEs), such as NASICON-based oxide, sulfide, hydroborate, anti-perovskite, and halide, as well as their uses in ASSBs, are covered in this review along with recent discoveries. ASSB problems, such as poor ISE-electrode compatibility and the potential for adverse reactions at the electrode interface, may be resolved by using ISEs in composite cathodes and solid interface layers. This illustrates the variety of applications for the ISEs class in the creation of complex ASSB models. In conclusion, we showcase existing ASSB models and forthcoming tactics to advance the advancement of ASSB development for the next generation.
期刊介绍:
ACS Central Science publishes significant primary reports on research in chemistry and allied fields where chemical approaches are pivotal. As the first fully open-access journal by the American Chemical Society, it covers compelling and important contributions to the broad chemistry and scientific community. "Central science," a term popularized nearly 40 years ago, emphasizes chemistry's central role in connecting physical and life sciences, and fundamental sciences with applied disciplines like medicine and engineering. The journal focuses on exceptional quality articles, addressing advances in fundamental chemistry and interdisciplinary research.