Surface Plasmons in Two-Dimensional MXenes

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Calvin Raab, Janek Rieger, Atreyie Ghosh, Joseph L. Spellberg, Sarah B. King
{"title":"Surface Plasmons in Two-Dimensional MXenes","authors":"Calvin Raab, Janek Rieger, Atreyie Ghosh, Joseph L. Spellberg, Sarah B. King","doi":"10.1021/acs.jpclett.4c02882","DOIUrl":null,"url":null,"abstract":"MXenes, a class of layered two-dimensional transition metal carbides and nitrides, exhibit excellent optoelectronic properties and show promise for fields ranging from photonics and communications to energy storage and catalysis. Some members of the MXene family are metallic and exhibit large in-plane conductivity, making them possibly suited for 2D plasmonics. The highly variable chemical structure of MXenes offers a broad chemical space to tune material properties for plasmonic applications, including plasmon-enhanced catalysis, surface-enhanced Raman spectroscopy (SERS), and electromagnetic shielding. However, this synthetic complexity has also presented several roadblocks in the process of moving MXene plasmonics into applications. For example, in the prototypical MXene Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub>, there remains disagreement over the bulk plasmon energy and the assignment of a prominent resonance around 1.7 eV. We discuss fundamental models and theories of plasmon physics and apply these models to MXenes in order to clarify some of these problems. We outline the potential for hyperbolic plasmons in MXenes and propose new avenues for MXene photonics research.","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpclett.4c02882","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

MXenes, a class of layered two-dimensional transition metal carbides and nitrides, exhibit excellent optoelectronic properties and show promise for fields ranging from photonics and communications to energy storage and catalysis. Some members of the MXene family are metallic and exhibit large in-plane conductivity, making them possibly suited for 2D plasmonics. The highly variable chemical structure of MXenes offers a broad chemical space to tune material properties for plasmonic applications, including plasmon-enhanced catalysis, surface-enhanced Raman spectroscopy (SERS), and electromagnetic shielding. However, this synthetic complexity has also presented several roadblocks in the process of moving MXene plasmonics into applications. For example, in the prototypical MXene Ti3C2Tx, there remains disagreement over the bulk plasmon energy and the assignment of a prominent resonance around 1.7 eV. We discuss fundamental models and theories of plasmon physics and apply these models to MXenes in order to clarify some of these problems. We outline the potential for hyperbolic plasmons in MXenes and propose new avenues for MXene photonics research.

Abstract Image

二维 MXenes 中的表面等离子体
MXenes 是一类层状二维过渡金属碳化物和氮化物,具有优异的光电特性,有望应用于光子学、通信、能量存储和催化等领域。MXene 家族的一些成员具有金属特性,并表现出较大的面内电导率,因此可能适用于二维等离子体。二氧杂环烯化学结构的高度可变性为调整质子应用的材料特性提供了广阔的化学空间,包括质子增强催化、表面增强拉曼光谱(SERS)和电磁屏蔽。然而,这种合成的复杂性也给 MXene 等离子体技术的应用带来了一些障碍。例如,在原型 MXene Ti3C2Tx 中,关于体等离子体能量和 1.7 eV 附近突出共振的分配仍然存在分歧。我们讨论了等离子物理学的基本模型和理论,并将这些模型应用于 MXene,以澄清其中的一些问题。我们概述了 MXenes 中双曲质子的潜力,并提出了 MXene 光子学研究的新途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信