Ziqi Deng, Yunfeng Luo, Guanheng Huang, Jiaxing He, David Lee Phillips
{"title":"Ultrafast Spectroscopic Investigation of the Aggregation Induced TADF from High-Level Reversed Intersystem Crossing","authors":"Ziqi Deng, Yunfeng Luo, Guanheng Huang, Jiaxing He, David Lee Phillips","doi":"10.1021/acs.jpclett.4c02395","DOIUrl":null,"url":null,"abstract":"The thermally activated delayed fluorescence (TADF) originating from high-level intersystem crossing (hRISC) presents great potential in realizing a more full utilization of triplet excitons. In this study, DPA-FBP and TPA-FBP were doped in a PMMA film with different weight fractions to study the effect of aggregation on the luminescence properties. As a result, the TADF feature from hRISC was only found in the 50 wt % doped film, whereas the 1 wt % doped film only shows prompt fluorescence. The fs-TA spectroscopy results reveal that the 50 wt % film will generate charge transfer species to lower the energy gap, so that the high-lying triplet exciton can transition back to the singlet state, whereas that of the 1 wt % film will quickly transition to the lowest triplet state due to the unfavorable energy splitting. This study provides a new insight into aggregation effects on the excited-state properties of hot exciton materials and the solid-state photodynamic.","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpclett.4c02395","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The thermally activated delayed fluorescence (TADF) originating from high-level intersystem crossing (hRISC) presents great potential in realizing a more full utilization of triplet excitons. In this study, DPA-FBP and TPA-FBP were doped in a PMMA film with different weight fractions to study the effect of aggregation on the luminescence properties. As a result, the TADF feature from hRISC was only found in the 50 wt % doped film, whereas the 1 wt % doped film only shows prompt fluorescence. The fs-TA spectroscopy results reveal that the 50 wt % film will generate charge transfer species to lower the energy gap, so that the high-lying triplet exciton can transition back to the singlet state, whereas that of the 1 wt % film will quickly transition to the lowest triplet state due to the unfavorable energy splitting. This study provides a new insight into aggregation effects on the excited-state properties of hot exciton materials and the solid-state photodynamic.
期刊介绍:
The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.