Mapping the ionosphere with millions of phones

IF 3.7 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Jamie Smith, Anton Kast, Anton Geraschenko, Y. Jade Morton, Michael P. Brenner, Frank van Diggelen, Brian P. Williams
{"title":"Mapping the ionosphere with millions of phones","authors":"Jamie Smith, Anton Kast, Anton Geraschenko, Y. Jade Morton, Michael P. Brenner, Frank van Diggelen, Brian P. Williams","doi":"10.1038/s41586-024-08072-x","DOIUrl":null,"url":null,"abstract":"The ionosphere is a layer of weakly ionized plasma bathed in Earth’s geomagnetic field extending about 50–1,500 kilometres above Earth1. The ionospheric total electron content varies in response to Earth’s space environment, interfering with Global Satellite Navigation System (GNSS) signals, resulting in one of the largest sources of error for position, navigation and timing services2. Networks of high-quality ground-based GNSS stations provide maps of ionospheric total electron content to correct these errors, but large spatiotemporal gaps in data from these stations mean that these maps may contain errors3. Here we demonstrate that a distributed network of noisy sensors—in the form of millions of Android phones—can fill in many of these gaps and double the measurement coverage, providing an accurate picture of the ionosphere in areas of the world underserved by conventional infrastructure. Using smartphone measurements, we resolve features such as plasma bubbles over India and South America, solar-storm-enhanced density over North America and a mid-latitude ionospheric trough over Europe. We also show that the resulting ionosphere maps can improve location accuracy, which is our primary aim. This work demonstrates the potential of using a large distributed network of smartphones as a powerful scientific instrument for monitoring Earth. Data from millions of smartphones are used to map the ionosphere in greater detail, leading to improved smartphone location accuracy, particularly in parts of the world with few monitoring stations.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41586-024-08072-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"103","ListUrlMain":"https://www.nature.com/articles/s41586-024-08072-x","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The ionosphere is a layer of weakly ionized plasma bathed in Earth’s geomagnetic field extending about 50–1,500 kilometres above Earth1. The ionospheric total electron content varies in response to Earth’s space environment, interfering with Global Satellite Navigation System (GNSS) signals, resulting in one of the largest sources of error for position, navigation and timing services2. Networks of high-quality ground-based GNSS stations provide maps of ionospheric total electron content to correct these errors, but large spatiotemporal gaps in data from these stations mean that these maps may contain errors3. Here we demonstrate that a distributed network of noisy sensors—in the form of millions of Android phones—can fill in many of these gaps and double the measurement coverage, providing an accurate picture of the ionosphere in areas of the world underserved by conventional infrastructure. Using smartphone measurements, we resolve features such as plasma bubbles over India and South America, solar-storm-enhanced density over North America and a mid-latitude ionospheric trough over Europe. We also show that the resulting ionosphere maps can improve location accuracy, which is our primary aim. This work demonstrates the potential of using a large distributed network of smartphones as a powerful scientific instrument for monitoring Earth. Data from millions of smartphones are used to map the ionosphere in greater detail, leading to improved smartphone location accuracy, particularly in parts of the world with few monitoring stations.

Abstract Image

Abstract Image

用数百万部手机绘制电离层地图
电离层是一层沐浴在地球地磁场中的弱电离等离子体,在地球上空延伸约 50-1,500 公里1 。电离层总电子含量随地球空间环境而变化,干扰全球卫星导航系统(GNSS)信号,是定位、导航和授时服务的最大误差来源之一2。高质量的地面全球导航卫星系统台站网络提供电离层电子总含量图,以纠正这些误差,但这些台站的数据存在巨大的时空差距,这意味着这些地图可能包含误差3。在这里,我们证明了以数百万部安卓手机为形式的噪声传感器分布式网络可以填补其中的许多空白,并将测量覆盖范围扩大一倍,为世界上传统基础设施服务不足的地区提供准确的电离层图像。利用智能手机测量,我们解析了印度和南美洲上空的等离子气泡、北美洲上空太阳风暴增强的密度以及欧洲上空的中纬度电离层槽等特征。我们还表明,由此绘制的电离层地图可以提高定位精度,而这正是我们的主要目标。这项工作展示了使用大型分布式智能手机网络作为监测地球的强大科学仪器的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Langmuir
Langmuir 化学-材料科学:综合
CiteScore
6.50
自引率
10.30%
发文量
1464
审稿时长
2.1 months
期刊介绍: Langmuir is an interdisciplinary journal publishing articles in the following subject categories: Colloids: surfactants and self-assembly, dispersions, emulsions, foams Interfaces: adsorption, reactions, films, forces Biological Interfaces: biocolloids, biomolecular and biomimetic materials Materials: nano- and mesostructured materials, polymers, gels, liquid crystals Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do? Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*. This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信