Multiple Strategies to Build High-Performance Spherical Na-Ion Layered Oxide Cathodes

IF 9.6 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xiangnan Li, Xinyu Tang, Mengdan Zhang, Ming Ge, Xiaojian Liu, Yuantao Cui, Yiwei Xu, Huishuang Zhang, Yanhong Yin, Shu-Ting Yang
{"title":"Multiple Strategies to Build High-Performance Spherical Na-Ion Layered Oxide Cathodes","authors":"Xiangnan Li, Xinyu Tang, Mengdan Zhang, Ming Ge, Xiaojian Liu, Yuantao Cui, Yiwei Xu, Huishuang Zhang, Yanhong Yin, Shu-Ting Yang","doi":"10.1021/acs.nanolett.4c02644","DOIUrl":null,"url":null,"abstract":"The development prospect of layered transition metal oxides in sodium-ion batteries is excellent, but there are some problems, such as poor cycle stability and a complex phase transition. The spherical NaNi<sub>0.25</sub>Fe<sub>0.15</sub>Mn<sub>0.3</sub>Ti<sub>0.1</sub>Sn<sub>0.05</sub>Co<sub>0.05</sub>Li<sub>0.1</sub>O<sub>2</sub> (SP-HEO) has been developed to address the challenges faced by O3-type layered oxide in sodium-ion batteries. The SP-HEO material is synthesized by piling and high entropy. The multiple strategies combine to enhance the electrochemical performance and air stability. The SP-HEO demonstrated a specific discharge capacity of 150.1 mA h g<sup>–1</sup> at 0.1 C and 100.4 mA h g<sup>–1</sup> at 7 C. Ex situ XRD analysis confirmed that the SP-HEO effectively retards complex phase transitions. This study not only introduces a high-entropy design for high tap density spherical storage materials but also dispels industry concerns regarding the performance of sodium ion layered oxide cathode materials.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":null,"pages":null},"PeriodicalIF":9.6000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c02644","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The development prospect of layered transition metal oxides in sodium-ion batteries is excellent, but there are some problems, such as poor cycle stability and a complex phase transition. The spherical NaNi0.25Fe0.15Mn0.3Ti0.1Sn0.05Co0.05Li0.1O2 (SP-HEO) has been developed to address the challenges faced by O3-type layered oxide in sodium-ion batteries. The SP-HEO material is synthesized by piling and high entropy. The multiple strategies combine to enhance the electrochemical performance and air stability. The SP-HEO demonstrated a specific discharge capacity of 150.1 mA h g–1 at 0.1 C and 100.4 mA h g–1 at 7 C. Ex situ XRD analysis confirmed that the SP-HEO effectively retards complex phase transitions. This study not only introduces a high-entropy design for high tap density spherical storage materials but also dispels industry concerns regarding the performance of sodium ion layered oxide cathode materials.

Abstract Image

构建高性能球形 Na 离子层状氧化物阴极的多种策略
层状过渡金属氧化物在钠离子电池中的发展前景非常好,但也存在一些问题,如循环稳定性差、相变复杂等。针对钠离子电池中 O3 型层状氧化物所面临的挑战,我们开发了球形 NaNi0.25Fe0.15Mn0.3Ti0.1Sn0.05Co0.05Li0.1O2 (SP-HEO)。SP-HEO 材料是通过堆积和高熵合成的。多种策略相结合,提高了电化学性能和空气稳定性。SP-HEO 在 0.1 C 时的比放电容量为 150.1 mA h g-1,在 7 C 时的比放电容量为 100.4 mA h g-1。这项研究不仅介绍了一种高熵设计的高分带密度球形存储材料,还消除了业界对钠离子层状氧化物阴极材料性能的担忧。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信