Functional, structural, and rheological properties of the complexes containing sunflower petal extract with dairy and plant-based proteins

IF 5.4 2区 医学 Q2 MATERIALS SCIENCE, BIOMATERIALS
Somayeh Abbaschian, Mostafa Soltani
{"title":"Functional, structural, and rheological properties of the complexes containing sunflower petal extract with dairy and plant-based proteins","authors":"Somayeh Abbaschian, Mostafa Soltani","doi":"10.1016/j.foodchem.2024.141948","DOIUrl":null,"url":null,"abstract":"This study aims to investigate the impact of sunflower petal extract (SFE) on the functional and structural properties of sodium caseinate and chickpea proteins. For this purpose, 3.5 % of sodium caseinate solution and 3.5 % of protein extracted from chickpea powder were prepared in phosphate buffer (pH = 7). SFE was used at different concentrations, from 1 to 3 % in different protein solutions and functional, structural and rheological properties were measured. The results revealed that complexation of SFE with different proteins can enhance the antioxidant, foaming properties, solubility, emulsion activity, emulsion stability, viscoelastic behavior, and can decrease surface hydrophobicity. FTIR and docking results showed that the most bonding type was non-covalent bonds. Major phenolic compounds containing heliannone A, B, and kaempferol had strong affinity with sodium caseinate, and then chickpea protein. Therefore, the results demonstrated that SFE and its complexes had appropriate emulsifying properties that reduces interfacial tension in the water/oil interface.","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.foodchem.2024.141948","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

This study aims to investigate the impact of sunflower petal extract (SFE) on the functional and structural properties of sodium caseinate and chickpea proteins. For this purpose, 3.5 % of sodium caseinate solution and 3.5 % of protein extracted from chickpea powder were prepared in phosphate buffer (pH = 7). SFE was used at different concentrations, from 1 to 3 % in different protein solutions and functional, structural and rheological properties were measured. The results revealed that complexation of SFE with different proteins can enhance the antioxidant, foaming properties, solubility, emulsion activity, emulsion stability, viscoelastic behavior, and can decrease surface hydrophobicity. FTIR and docking results showed that the most bonding type was non-covalent bonds. Major phenolic compounds containing heliannone A, B, and kaempferol had strong affinity with sodium caseinate, and then chickpea protein. Therefore, the results demonstrated that SFE and its complexes had appropriate emulsifying properties that reduces interfacial tension in the water/oil interface.

Abstract Image

含有向日葵花瓣提取物与乳制品和植物蛋白的复合物的功能、结构和流变特性
本研究旨在探讨向日葵花瓣提取物(SFE)对酪蛋白酸钠和鹰嘴豆蛋白的功能和结构特性的影响。为此,在磷酸盐缓冲液(pH = 7)中制备了 3.5 % 的酪蛋白酸钠溶液和 3.5 % 的鹰嘴豆粉提取蛋白。在不同的蛋白质溶液中使用了不同浓度的 SFE(1% 至 3%),并对其功能、结构和流变特性进行了测量。结果表明,SFE 与不同蛋白质的络合可增强抗氧化性、发泡特性、溶解性、乳化活性、乳化稳定性和粘弹性,并可降低表面疏水性。傅立叶变换红外光谱(FTIR)和对接结果表明,最多的结合类型是非共价键。主要酚类化合物中的氦酮 A、B 和山奈酚与酪蛋白酸钠有很强的亲和力,然后是鹰嘴豆蛋白。因此,研究结果表明,SFE 及其复合物具有适当的乳化特性,可降低水/油界面的界面张力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Biomaterials Science & Engineering
ACS Biomaterials Science & Engineering Materials Science-Biomaterials
CiteScore
10.30
自引率
3.40%
发文量
413
期刊介绍: ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics: Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信