Shreyasi Banik, Navaneet Kumar, Vikas D. Ghule, Srinivas Dharavath
{"title":"Skeletal Editing of Energetic Materials: Acid-Catalyzed One-Step Synthesis of Bridged Triazoles as High-Energy-Density Materials via the Nef Reaction","authors":"Shreyasi Banik, Navaneet Kumar, Vikas D. Ghule, Srinivas Dharavath","doi":"10.1021/acsami.4c16858","DOIUrl":null,"url":null,"abstract":"Thermally stable insensitive energetic materials have captivated significant attention from the global research community due to their potential impact. In this study, a series of symmetric and asymmetric nitromethyl-bridged triazole compounds were synthesized from pyrimidine moieties via a skeletal editing approach. Additionally, carbonyl-bridged compounds were synthesized in a single step by using acid-catalyzed Nef reactions from their nitromethyl precursors. Peripheral modifications of pyrimidine resulted in fused energetic moieties. All synthesized compounds were fully characterized by using infrared spectroscopy, high-resolution mass spectrometry, multinuclear magnetic resonance spectroscopy, elemental analysis, and differential scanning calorimetry. Single-crystal X-ray diffraction analysis confirmed the structures of compounds <b>4</b> and <b>10</b>. The newly synthesized moieties exhibit densities ranging from 1.75 to 1.86 g cm<sup>–3</sup>, detonation velocities between 8044 and 8608 m s<sup>–1</sup>, and detonation pressures between 23.10 and 30.31 GPa. Notably, compounds <b>9</b> and <b>10</b> demonstrate exceptional heat resistance, with decomposition temperatures of 315 and 335 °C, respectively. Computational studies, including density functional theory, quantum theory of atoms in molecules, noncovalent interactions, and electrostatic surface potential analysis, account for hydrogen-bonding and noncovalent interactions. This work highlights the potential of skeletal editing in the development of high-performing, thermally stable energetic materials.","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c16858","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Thermally stable insensitive energetic materials have captivated significant attention from the global research community due to their potential impact. In this study, a series of symmetric and asymmetric nitromethyl-bridged triazole compounds were synthesized from pyrimidine moieties via a skeletal editing approach. Additionally, carbonyl-bridged compounds were synthesized in a single step by using acid-catalyzed Nef reactions from their nitromethyl precursors. Peripheral modifications of pyrimidine resulted in fused energetic moieties. All synthesized compounds were fully characterized by using infrared spectroscopy, high-resolution mass spectrometry, multinuclear magnetic resonance spectroscopy, elemental analysis, and differential scanning calorimetry. Single-crystal X-ray diffraction analysis confirmed the structures of compounds 4 and 10. The newly synthesized moieties exhibit densities ranging from 1.75 to 1.86 g cm–3, detonation velocities between 8044 and 8608 m s–1, and detonation pressures between 23.10 and 30.31 GPa. Notably, compounds 9 and 10 demonstrate exceptional heat resistance, with decomposition temperatures of 315 and 335 °C, respectively. Computational studies, including density functional theory, quantum theory of atoms in molecules, noncovalent interactions, and electrostatic surface potential analysis, account for hydrogen-bonding and noncovalent interactions. This work highlights the potential of skeletal editing in the development of high-performing, thermally stable energetic materials.
期刊介绍:
ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics:
Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology
Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions
Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis
Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering
Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends
Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring
Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration
Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials
Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture