Ultrasonic Control of Polymer-Capped Plasmonic Molecules

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yingying Cai*, Swagato Sarkar, Yuwen Peng, Tobias A. F. König and Philipp Vana, 
{"title":"Ultrasonic Control of Polymer-Capped Plasmonic Molecules","authors":"Yingying Cai*,&nbsp;Swagato Sarkar,&nbsp;Yuwen Peng,&nbsp;Tobias A. F. König and Philipp Vana,&nbsp;","doi":"10.1021/acsnano.4c1091210.1021/acsnano.4c10912","DOIUrl":null,"url":null,"abstract":"<p >Plasmonic molecules (PMs) composed of polymer-capped nanoparticles represent an emerging material class with precise optical functionalities. However, achieving controlled structural changes in metallic nanoparticle aggregation at the nanoscale, similar to the modification of atomic structures, remains challenging. This study demonstrates the 2D/3D isomerization of such plasmonic molecules induced by a controlled ultrasound process. We used two types of gold nanoparticles, each functionalized with hydrogen bonding (HB) donor or acceptor polymers, to self-assemble into different AB<sub><i>N</i></sub>-type complexes via interparticle polymer bundles acting as molecular bonds. Post-ultrasonication treatment significantly shortens these bonds from approximately 14 to 2 nm by enhancing HB cross-linking within the bundles. This drastic change in the bond length increases the stiffness of the resulting clusters, facilitating the transition from 2D to 3D configurations in 100% yield during drop-casting onto substrates. Our results advance the precise control of PMs’ nanoarchitectures and provide insights for their broad applications in sensing, optoelectronics, and metamaterials.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"18 45","pages":"31360–31371 31360–31371"},"PeriodicalIF":15.8000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsnano.4c10912","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.4c10912","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Plasmonic molecules (PMs) composed of polymer-capped nanoparticles represent an emerging material class with precise optical functionalities. However, achieving controlled structural changes in metallic nanoparticle aggregation at the nanoscale, similar to the modification of atomic structures, remains challenging. This study demonstrates the 2D/3D isomerization of such plasmonic molecules induced by a controlled ultrasound process. We used two types of gold nanoparticles, each functionalized with hydrogen bonding (HB) donor or acceptor polymers, to self-assemble into different ABN-type complexes via interparticle polymer bundles acting as molecular bonds. Post-ultrasonication treatment significantly shortens these bonds from approximately 14 to 2 nm by enhancing HB cross-linking within the bundles. This drastic change in the bond length increases the stiffness of the resulting clusters, facilitating the transition from 2D to 3D configurations in 100% yield during drop-casting onto substrates. Our results advance the precise control of PMs’ nanoarchitectures and provide insights for their broad applications in sensing, optoelectronics, and metamaterials.

超声波控制聚合物封装的质子分子
由聚合物包裹的纳米粒子组成的等离子分子(PMs)是一类具有精确光学功能的新兴材料。然而,在纳米尺度上实现金属纳米粒子聚集的可控结构变化(类似于原子结构的改变)仍然具有挑战性。本研究展示了受控超声过程诱导的此类质子分子的 2D/3D 异构化。我们使用了两种类型的金纳米粒子,每种粒子都用氢键(HB)供体或受体聚合物进行了官能化,通过粒子间的聚合物束作为分子键,自组装成不同的 ABN 型复合物。通过加强束内的氢键交联,超声处理后可显著缩短这些键的长度,从大约 14 纳米缩短到 2 纳米。键长的这种急剧变化增加了由此产生的簇的刚度,有利于在滴铸到基底上时以 100% 的产量从二维构型过渡到三维构型。我们的研究成果推动了对 PMs 纳米结构的精确控制,并为 PMs 在传感、光电和超材料领域的广泛应用提供了启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信