Yanting Zuo, Shi Cheng, Yuze Han, Liangtao Pu, Erdeng Du, Mingguo Peng, Aimin Li* and Wentao Li*,
{"title":"Chlorination of Biopterin in Water: Deciphering the Kinetics, Disinfection Byproducts, and Toxicity","authors":"Yanting Zuo, Shi Cheng, Yuze Han, Liangtao Pu, Erdeng Du, Mingguo Peng, Aimin Li* and Wentao Li*, ","doi":"10.1021/acs.est.4c0484410.1021/acs.est.4c04844","DOIUrl":null,"url":null,"abstract":"<p >Pterins, including biopterin prevalent during cyanobacterial blooms, are nitrogen-containing heterocyclic compounds ubiquitous in both natural and engineered environments. However, their roles and associated human risks in water treatment remain poorly understood. This study systematically investigated the kinetics, disinfection byproducts (DBPs), and toxicity of biopterin in chlorination. For deciphering the reaction kinetics, 1,3,5-trimethoxybenzene proved to be a more effective chlorine quencher than the commonly used reducing agents, as it preserved N-chlorinated intermediates without reversing them back to biopterin. The pH-dependent kinetics demonstrated that both chlorine and biopterin species had a significant influence on the reaction rates, with deprotonated biopterin exhibiting a markedly higher reactivity toward HClO/ClO<sup>–</sup>. Based on time-of-flight mass spectrometry, ten transformation products (TPs) including seven halogenated N–Cl ones, have been identified for the first time. These cyclic TPs were transformed into various aliphatic carbonaceous and nitrogenous DBPs during the subsequent chlorination process. Notably, theoretical predictions and the luminescent bacteria assay confirmed potential higher toxicities of these products than biopterin. These findings highlight the potential risks of pterins during water disinfection and provide a reference framework for accurately revealing the chlorination behavior of emerging nitrogenous chemicals.</p>","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"58 45","pages":"20137–20146 20137–20146"},"PeriodicalIF":10.8000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.est.4c04844","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Pterins, including biopterin prevalent during cyanobacterial blooms, are nitrogen-containing heterocyclic compounds ubiquitous in both natural and engineered environments. However, their roles and associated human risks in water treatment remain poorly understood. This study systematically investigated the kinetics, disinfection byproducts (DBPs), and toxicity of biopterin in chlorination. For deciphering the reaction kinetics, 1,3,5-trimethoxybenzene proved to be a more effective chlorine quencher than the commonly used reducing agents, as it preserved N-chlorinated intermediates without reversing them back to biopterin. The pH-dependent kinetics demonstrated that both chlorine and biopterin species had a significant influence on the reaction rates, with deprotonated biopterin exhibiting a markedly higher reactivity toward HClO/ClO–. Based on time-of-flight mass spectrometry, ten transformation products (TPs) including seven halogenated N–Cl ones, have been identified for the first time. These cyclic TPs were transformed into various aliphatic carbonaceous and nitrogenous DBPs during the subsequent chlorination process. Notably, theoretical predictions and the luminescent bacteria assay confirmed potential higher toxicities of these products than biopterin. These findings highlight the potential risks of pterins during water disinfection and provide a reference framework for accurately revealing the chlorination behavior of emerging nitrogenous chemicals.
期刊介绍:
Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences.
Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.