Flexible Near-Infrared Plasmon-Polaritons in Epitaxial Scandium Nitride Enabled by van der Waals Heteroepitaxy

IF 9.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Debmalya Mukhopadhyay, Dheemahi Rao, Rahul Singh Rawat, Ashalatha Indiradevi Kamalasanan Pillai, Magnus Garbrecht and Bivas Saha*, 
{"title":"Flexible Near-Infrared Plasmon-Polaritons in Epitaxial Scandium Nitride Enabled by van der Waals Heteroepitaxy","authors":"Debmalya Mukhopadhyay,&nbsp;Dheemahi Rao,&nbsp;Rahul Singh Rawat,&nbsp;Ashalatha Indiradevi Kamalasanan Pillai,&nbsp;Magnus Garbrecht and Bivas Saha*,&nbsp;","doi":"10.1021/acs.nanolett.4c0461610.1021/acs.nanolett.4c04616","DOIUrl":null,"url":null,"abstract":"<p >Van der Waals heteroepitaxy refers to the growth of strain- and misfit-dislocation-free epitaxial films on layered substrates or vice versa. Such heteroepitaxial technique can be utilized in developing flexible near-infrared transition metal nitride plasmonic materials to broaden their photonic and bioplasmonic applications, such as antifogging, smart windows, and bioimaging. Here, we show the first conclusive experimental demonstration of the van der Waals heteroepitaxy-enabled flexible semiconducting scandium nitride (ScN) thin films exhibiting near-infrared, low-loss epsilon-near-zero, and surface plasmon-polariton resonances. Deposited on fluorophlogopite-mica substrates with molecular beam epitaxy, polaritonic ScN heterostructures mark the first semiconducting nitride to exhibit plasmon resonance at the 1100–1250 nm spectral range, inside the biological transmission window. Interestingly, optical properties of such ScN exhibit remarkable stability even after bending more than 100 times. Creating low-cost and high-quality flexible yet refractory plasmonic ScN heterostructures for the near-infrared spectral range will advance flexible optics and bioplasmonic devices for practical applications.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"24 45","pages":"14493–14499 14493–14499"},"PeriodicalIF":9.1000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.nanolett.4c04616","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Van der Waals heteroepitaxy refers to the growth of strain- and misfit-dislocation-free epitaxial films on layered substrates or vice versa. Such heteroepitaxial technique can be utilized in developing flexible near-infrared transition metal nitride plasmonic materials to broaden their photonic and bioplasmonic applications, such as antifogging, smart windows, and bioimaging. Here, we show the first conclusive experimental demonstration of the van der Waals heteroepitaxy-enabled flexible semiconducting scandium nitride (ScN) thin films exhibiting near-infrared, low-loss epsilon-near-zero, and surface plasmon-polariton resonances. Deposited on fluorophlogopite-mica substrates with molecular beam epitaxy, polaritonic ScN heterostructures mark the first semiconducting nitride to exhibit plasmon resonance at the 1100–1250 nm spectral range, inside the biological transmission window. Interestingly, optical properties of such ScN exhibit remarkable stability even after bending more than 100 times. Creating low-cost and high-quality flexible yet refractory plasmonic ScN heterostructures for the near-infrared spectral range will advance flexible optics and bioplasmonic devices for practical applications.

Abstract Image

通过范德华异向外延技术实现外延氮化钪中灵活的近红外等离子体极化子
范德瓦耳斯异质外延是指在层状基底上生长无应变和无错位的外延薄膜,反之亦然。这种异质外延技术可用于开发柔性近红外过渡金属氮化物质子材料,以拓宽其光子和生物质子应用领域,如防雾、智能窗户和生物成像。在这里,我们首次通过实验确证了范德瓦耳斯异相氮化钪(ScN)薄膜具有柔性半导体特性,可产生近红外、低损耗ε-近零和表面等离子体-极化子共振。通过分子束外延沉积在氟磷灰石-云母衬底上的极性氮化镓异质结构是首个在 1100-1250 纳米光谱范围(生物透射窗口内)表现出等离子体共振的半导体氮化物。有趣的是,即使弯曲 100 多次,这种 ScN 的光学特性仍表现出显著的稳定性。为近红外光谱范围创建低成本、高质量的柔性难熔等离子体 ScN 异质结构,将推动柔性光学和生物等离子体器件的实际应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信