Yaping Liu, Di Wang, Yaoyao Lai, Jiahui Zou, Pei Yang, Zhenfeng Wu* and Wei He*,
{"title":"Deep Eutectic Solvents for Essential-Oil Delivery and Bacterial-Infected Wound Healing","authors":"Yaping Liu, Di Wang, Yaoyao Lai, Jiahui Zou, Pei Yang, Zhenfeng Wu* and Wei He*, ","doi":"10.1021/acs.langmuir.4c0273610.1021/acs.langmuir.4c02736","DOIUrl":null,"url":null,"abstract":"<p >Essential oils (EOs) are volatile secondary metabolites of natural plants with multitudinous pharmacological activities. However, limited by their properties, such as low solubility, high volatility, photothermal instability, irritation, release, etc., EOs encounter significant challenges in pharmaceutical applications. Deep eutectic solvents (DESs) have been developed for the transdermal delivery of biomolecules and lipid-soluble drugs. Herein, a series of DES carriers were synthesized to improve the undesirable properties of EOs. We first optimized the DESs according to solubilization and aqueous dispersity using <i>Chimonanthus nitens</i> Oliv. EO (COEO) as a model EO. Then, the EO–DES formulations were diluted to prepare optimal aqueous EO–DES nanoformulations (AqEDs). Mechanically, hydrogen bonding allowed the DES to dissolve the complex components in EOs; meanwhile, the interaction forces, such as π<i>–</i>π stacking and hydrogen bonding, drove the EO–DES to assemble into nanostructures in aqueous conditions, forming AqEDs. Lastly, a case study demonstrated that clove EO-AqEDscould effectively promote methicillin-resistant <i>Staphylococcus aureus</i>-infected wound healing <i>in vivo</i>, along with biocompatibility. This AqED strategy provides a generalized platform for solubilizing EOs and improving their transdermal/topical delivery.</p>","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"40 45","pages":"23766–23779 23766–23779"},"PeriodicalIF":3.7000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.langmuir.4c02736","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Essential oils (EOs) are volatile secondary metabolites of natural plants with multitudinous pharmacological activities. However, limited by their properties, such as low solubility, high volatility, photothermal instability, irritation, release, etc., EOs encounter significant challenges in pharmaceutical applications. Deep eutectic solvents (DESs) have been developed for the transdermal delivery of biomolecules and lipid-soluble drugs. Herein, a series of DES carriers were synthesized to improve the undesirable properties of EOs. We first optimized the DESs according to solubilization and aqueous dispersity using Chimonanthus nitens Oliv. EO (COEO) as a model EO. Then, the EO–DES formulations were diluted to prepare optimal aqueous EO–DES nanoformulations (AqEDs). Mechanically, hydrogen bonding allowed the DES to dissolve the complex components in EOs; meanwhile, the interaction forces, such as π–π stacking and hydrogen bonding, drove the EO–DES to assemble into nanostructures in aqueous conditions, forming AqEDs. Lastly, a case study demonstrated that clove EO-AqEDscould effectively promote methicillin-resistant Staphylococcus aureus-infected wound healing in vivo, along with biocompatibility. This AqED strategy provides a generalized platform for solubilizing EOs and improving their transdermal/topical delivery.
期刊介绍:
Langmuir is an interdisciplinary journal publishing articles in the following subject categories:
Colloids: surfactants and self-assembly, dispersions, emulsions, foams
Interfaces: adsorption, reactions, films, forces
Biological Interfaces: biocolloids, biomolecular and biomimetic materials
Materials: nano- and mesostructured materials, polymers, gels, liquid crystals
Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry
Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals
However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do?
Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*.
This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).