Biocompatible Acellular Dermal Matrix-Based Neuromorphic Device with Ultralow Voltage, Ion Channel Emulation, and Synaptic Forgetting Visualization Computation

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Lei Li, Yihua Xu, Qunkai Peng, Pei Huang, Xinqing Duan, Mingqiang Wang, Yu Jiang, Jie Wang, Srinivasan Periasamy, Dar-Jen Hsieh and Kuan-Chang Chang*, 
{"title":"Biocompatible Acellular Dermal Matrix-Based Neuromorphic Device with Ultralow Voltage, Ion Channel Emulation, and Synaptic Forgetting Visualization Computation","authors":"Lei Li,&nbsp;Yihua Xu,&nbsp;Qunkai Peng,&nbsp;Pei Huang,&nbsp;Xinqing Duan,&nbsp;Mingqiang Wang,&nbsp;Yu Jiang,&nbsp;Jie Wang,&nbsp;Srinivasan Periasamy,&nbsp;Dar-Jen Hsieh and Kuan-Chang Chang*,&nbsp;","doi":"10.1021/acsnano.4c1038310.1021/acsnano.4c10383","DOIUrl":null,"url":null,"abstract":"<p >Neuromorphic bioelectronics aim to integrate electronics with biological systems yet encounter challenges in biocompatibility, operating voltages, power consumption, and stability. This study presents biocompatible neuromorphic devices fabricated from acellular dermal matrix (ADM) derived from porcine dermis using low-temperature supercritical CO<sub>2</sub> extraction. The ADM preserves the natural scaffold structure of collagen and minimizes immunogenicity by eliminating cells, fats, and noncollagenous impurities, ensuring excellent biocompatibility. The ADM-based devices emulate biological ion channels with biphasic membrane current modulation, exhibiting temperature dependency and pH sensitivity. It operates at an ultralow voltage of 1 mV and demonstrates reliable synaptic modulation exceeding 4 × 10<sup>4</sup> endurance cycles. The activation voltage can be theoretically as low as 59 μV, comparable to brainwave signals with a power of merely 7 aJ/event. Furthermore, a brain-like forgetting visualization algorithm is developed, leveraging the synaptic forgetting plasticity of ADM-based devices to achieve complex computing tasks in a highly energy-efficient manner. Neuromorphic devices based on ADM not only hold potential in implantable biointerfaces due to their exceptional biocompatibility, ultralow voltage, and power but also provide a feasible way for energy-efficient computing paradigms through a synergistic hardware-software approach.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"18 45","pages":"31309–31322 31309–31322"},"PeriodicalIF":15.8000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.4c10383","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Neuromorphic bioelectronics aim to integrate electronics with biological systems yet encounter challenges in biocompatibility, operating voltages, power consumption, and stability. This study presents biocompatible neuromorphic devices fabricated from acellular dermal matrix (ADM) derived from porcine dermis using low-temperature supercritical CO2 extraction. The ADM preserves the natural scaffold structure of collagen and minimizes immunogenicity by eliminating cells, fats, and noncollagenous impurities, ensuring excellent biocompatibility. The ADM-based devices emulate biological ion channels with biphasic membrane current modulation, exhibiting temperature dependency and pH sensitivity. It operates at an ultralow voltage of 1 mV and demonstrates reliable synaptic modulation exceeding 4 × 104 endurance cycles. The activation voltage can be theoretically as low as 59 μV, comparable to brainwave signals with a power of merely 7 aJ/event. Furthermore, a brain-like forgetting visualization algorithm is developed, leveraging the synaptic forgetting plasticity of ADM-based devices to achieve complex computing tasks in a highly energy-efficient manner. Neuromorphic devices based on ADM not only hold potential in implantable biointerfaces due to their exceptional biocompatibility, ultralow voltage, and power but also provide a feasible way for energy-efficient computing paradigms through a synergistic hardware-software approach.

Abstract Image

具有超低电压、离子通道仿真和突触遗忘可视化计算功能的生物相容性细胞真皮基质神经形态设备
神经形态生物电子学旨在将电子学与生物系统集成在一起,但在生物兼容性、工作电压、功耗和稳定性方面遇到了挑战。本研究介绍了利用低温超临界二氧化碳萃取法从猪真皮中提取的非细胞真皮基质(ADM)制造的生物相容性神经形态设备。ADM 保留了胶原蛋白的天然支架结构,并通过去除细胞、脂肪和非胶原蛋白杂质最大程度地降低了免疫原性,从而确保了出色的生物相容性。基于 ADM 的器件通过双相膜电流调制模拟生物离子通道,具有温度依赖性和 pH 敏感性。它可在 1 mV 的超低电压下工作,并显示出可靠的突触调制能力,超过 4 × 104 个耐力周期。理论上,激活电压可低至 59 μV,与功率仅为 7 aJ/event 的脑电波信号相当。此外,还开发了一种类似大脑遗忘的可视化算法,利用基于 ADM 的设备的突触遗忘可塑性,以高效节能的方式完成复杂的计算任务。基于 ADM 的神经形态设备不仅因其出色的生物兼容性、超低电压和功率而具有植入式生物接口的潜力,而且还通过软硬件协同方法为高能效计算范例提供了可行的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信