Omar E. Solis, Miriam Mínguez-Avellán, Pablo F. Betancur, Raúl I. Sánchez- Alarcón, Isabelle Rodriguez, Juan P. Martínez-Pastor, Teresa S. Ripolles*, Rafael Abargues* and Pablo P. Boix*,
{"title":"Adjusting the Crystallization of Tin Perovskites through Thiophene Additives for Improved Photovoltaic Stability","authors":"Omar E. Solis, Miriam Mínguez-Avellán, Pablo F. Betancur, Raúl I. Sánchez- Alarcón, Isabelle Rodriguez, Juan P. Martínez-Pastor, Teresa S. Ripolles*, Rafael Abargues* and Pablo P. Boix*, ","doi":"10.1021/acsenergylett.4c0187510.1021/acsenergylett.4c01875","DOIUrl":null,"url":null,"abstract":"<p >Tin-based perovskites (Sn-PVK) are promising lead-free alternatives for efficient photovoltaic technology, but they face challenges related to bulk and surface defects due to suboptimal crystallization and Sn<sup>2+</sup> oxidation. Introducing thiophene-2-ethylammonium halides (TEAX, where X = I, Br, Cl) improves FASnI<sub>3</sub> crystallization and reduces Sn<sup>4+</sup> formation. This is achieved by adjusting the crystallization dynamics through the formation of a complex between S and Sn during the preparation of the precursor solution, which also inhibits Sn<sup>2+</sup> oxidation in the resulting films. In solar cells, these additives boost power conversion efficiency (PCE) from 6.6% (without additives) to 9.4% (using TEABr), with further enhancement to 12% by adjusting selective contacts. The addition of TEAX also increases the Sn<sup>2+</sup> content, outperforming control. Devices with TEABr maintained over 95% of their initial PCE after 2000 h in N<sub>2</sub> under continuous operation with 1 sun simulated illumination.</p>","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":"9 11","pages":"5288–5295 5288–5295"},"PeriodicalIF":19.3000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsenergylett.4c01875","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsenergylett.4c01875","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Tin-based perovskites (Sn-PVK) are promising lead-free alternatives for efficient photovoltaic technology, but they face challenges related to bulk and surface defects due to suboptimal crystallization and Sn2+ oxidation. Introducing thiophene-2-ethylammonium halides (TEAX, where X = I, Br, Cl) improves FASnI3 crystallization and reduces Sn4+ formation. This is achieved by adjusting the crystallization dynamics through the formation of a complex between S and Sn during the preparation of the precursor solution, which also inhibits Sn2+ oxidation in the resulting films. In solar cells, these additives boost power conversion efficiency (PCE) from 6.6% (without additives) to 9.4% (using TEABr), with further enhancement to 12% by adjusting selective contacts. The addition of TEAX also increases the Sn2+ content, outperforming control. Devices with TEABr maintained over 95% of their initial PCE after 2000 h in N2 under continuous operation with 1 sun simulated illumination.
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍:
ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format.
ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology.
The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.