Xu Dong, Alexander Mayer, Zhen Chen, Stefano Passerini* and Dominic Bresser*,
{"title":"Advanced Single-Ion Conducting Block Copolymer Electrolyte for Safer and Less Costly Lithium–Metal Batteries","authors":"Xu Dong, Alexander Mayer, Zhen Chen, Stefano Passerini* and Dominic Bresser*, ","doi":"10.1021/acsenergylett.4c0208110.1021/acsenergylett.4c02081","DOIUrl":null,"url":null,"abstract":"<p >High-performance polymer electrolyte systems for lithium–metal batteries (LMBs) commonly contain a relatively high amount of fluorine to stabilize the electrode|electrolyte interfaces, particularly that with lithium metal. Herein, we report an advanced single-ion conducting polymer electrolyte that contains less fluorine in the backbone than previous systems, enabling a significant cost reduction, while still providing highly stable cycling of LMB cells containing LiNi<sub>0.6</sub>Co<sub>0.2</sub>Mn<sub>0.2</sub>O<sub>2</sub> (NCM<sub>622</sub>) and LiNi<sub>0.8</sub>Co<sub>0.1</sub>Mn<sub>0.1</sub>O<sub>2</sub> (NCM<sub>811</sub>) positive electrodes. Moreover, we show that the choice of the incorporated “molecular transporters”, i.e., small molecules with high mobility and a high dielectric constant to facilitate the Li<sup>+</sup> transport, is essential for achieving high-performance LMB cells. In fact, the transition from pure ethylene carbonate to a mixture with propylene carbonate allows for an extended electrochemical stability toward oxidation and higher limiting current density, resulting in enhanced rate capability and cycling stability of Li∥NCM cells─and the possibility to cycle these cells also at ambient temperature.</p>","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":"9 11","pages":"5279–5287 5279–5287"},"PeriodicalIF":19.3000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsenergylett.4c02081","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
High-performance polymer electrolyte systems for lithium–metal batteries (LMBs) commonly contain a relatively high amount of fluorine to stabilize the electrode|electrolyte interfaces, particularly that with lithium metal. Herein, we report an advanced single-ion conducting polymer electrolyte that contains less fluorine in the backbone than previous systems, enabling a significant cost reduction, while still providing highly stable cycling of LMB cells containing LiNi0.6Co0.2Mn0.2O2 (NCM622) and LiNi0.8Co0.1Mn0.1O2 (NCM811) positive electrodes. Moreover, we show that the choice of the incorporated “molecular transporters”, i.e., small molecules with high mobility and a high dielectric constant to facilitate the Li+ transport, is essential for achieving high-performance LMB cells. In fact, the transition from pure ethylene carbonate to a mixture with propylene carbonate allows for an extended electrochemical stability toward oxidation and higher limiting current density, resulting in enhanced rate capability and cycling stability of Li∥NCM cells─and the possibility to cycle these cells also at ambient temperature.
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍:
ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format.
ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology.
The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.