Triggering Ion Diffusion and Electron Transport Dual Pathways for High Efficiency Electrochemical Li+ Extraction

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Honglong Zhan, Zhiqiang Qian, Yingjun Qiao, Baoliang Lv, Ruirui Liu, Hong Chen* and Zhong Liu*, 
{"title":"Triggering Ion Diffusion and Electron Transport Dual Pathways for High Efficiency Electrochemical Li+ Extraction","authors":"Honglong Zhan,&nbsp;Zhiqiang Qian,&nbsp;Yingjun Qiao,&nbsp;Baoliang Lv,&nbsp;Ruirui Liu,&nbsp;Hong Chen* and Zhong Liu*,&nbsp;","doi":"10.1021/acsnano.4c0937910.1021/acsnano.4c09379","DOIUrl":null,"url":null,"abstract":"<p >Efficient electrochemical Li<sup>+</sup> adsorption holds significant promise for lithium extraction, while the mismatched rate between Li<sup>+</sup> diffusion and electron transport within the electrode material impedes the electrochemical activity and restricts the adsorption efficiency. To address this challenge, herein, we rationally design and integrate the ion and electron dual-conducting poly(vinyl alcohol)–polyaniline (PVA-PANI) copolymer (CP) within the H<sub>1.6</sub>Mn<sub>1.6</sub>O<sub>4</sub> (HMO) electrode matrix to facilitate Li<sup>+</sup> diffusion and electron transport. The Li<sup>+</sup> diffusion coefficient (<i>D</i><sub>Li+</sub>) increased from 3.03 × 10<sup>–10</sup> to 5.92 × 10<sup>–10</sup> cm<sup>2</sup>/s, while the charge transfer resistance (<i>R</i><sub>ct</sub>) decreased from 53.73 to 29.57 ohm. Consequently, the HMO@CP electrode exhibits superior adsorption kinetics and a state-of-the-art high adsorption capacity of up to 49.48 mg/g. Comprehensive mechanistic studies reveal that the negatively charged hydroxyl groups (−OH) in PVA accelerate Li<sup>+</sup> diffusion and that the conjugated structure and redox-active quinoid sites in PANI offer denser electron distribution and promote electron transport. This synergistic effect in CP significantly enhanced Li<sup>+</sup> diffusion and electron transport, leading to electrochemical activity and adsorption efficiency. Our work highlights the critical role of simultaneously regulating the ion diffusion and electron transport dual pathways for optimizing Li<sup>+</sup> adsorption performance and inspires development of the next generation electrochemical adsorption electrodes.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"18 45","pages":"31204–31214 31204–31214"},"PeriodicalIF":15.8000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.4c09379","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Efficient electrochemical Li+ adsorption holds significant promise for lithium extraction, while the mismatched rate between Li+ diffusion and electron transport within the electrode material impedes the electrochemical activity and restricts the adsorption efficiency. To address this challenge, herein, we rationally design and integrate the ion and electron dual-conducting poly(vinyl alcohol)–polyaniline (PVA-PANI) copolymer (CP) within the H1.6Mn1.6O4 (HMO) electrode matrix to facilitate Li+ diffusion and electron transport. The Li+ diffusion coefficient (DLi+) increased from 3.03 × 10–10 to 5.92 × 10–10 cm2/s, while the charge transfer resistance (Rct) decreased from 53.73 to 29.57 ohm. Consequently, the HMO@CP electrode exhibits superior adsorption kinetics and a state-of-the-art high adsorption capacity of up to 49.48 mg/g. Comprehensive mechanistic studies reveal that the negatively charged hydroxyl groups (−OH) in PVA accelerate Li+ diffusion and that the conjugated structure and redox-active quinoid sites in PANI offer denser electron distribution and promote electron transport. This synergistic effect in CP significantly enhanced Li+ diffusion and electron transport, leading to electrochemical activity and adsorption efficiency. Our work highlights the critical role of simultaneously regulating the ion diffusion and electron transport dual pathways for optimizing Li+ adsorption performance and inspires development of the next generation electrochemical adsorption electrodes.

Abstract Image

触发离子扩散和电子传输双途径,实现高效电化学萃取 Li+
高效的电化学 Li+ 吸附为锂萃取带来了巨大前景,而电极材料内 Li+ 扩散与电子传输之间的速率不匹配会阻碍电化学活性并限制吸附效率。为解决这一难题,我们在本文中合理设计并在 H1.6Mn1.6O4 (HMO) 电极基质中整合了离子和电子双导聚乙烯醇-聚苯胺(PVA-PANI)共聚物(CP),以促进 Li+ 扩散和电子传输。Li+ 扩散系数 (DLi+) 从 3.03 × 10-10 cm2/s 提高到 5.92 × 10-10 cm2/s,而电荷转移电阻 (Rct) 则从 53.73 欧姆降低到 29.57 欧姆。因此,HMO@CP 电极显示出卓越的吸附动力学性能和高达 49.48 毫克/克的一流吸附容量。全面的机理研究表明,PVA 中带负电荷的羟基(-OH)加速了 Li+ 的扩散,而 PANI 中的共轭结构和氧化还原活性醌位点提供了更密集的电子分布,促进了电子传输。CP 中的这种协同效应显著增强了 Li+ 扩散和电子传输,从而提高了电化学活性和吸附效率。我们的研究工作强调了同时调节离子扩散和电子传输双通道对优化 Li+ 吸附性能的关键作用,并启发了下一代电化学吸附电极的开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信