Visible Light Induced Photocatalytic Degradation of Diclofenac in Aqueous Solution Using Fabricated ZnO/g-C3N4 by Facile Calcination Technique

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Mahmudul Hassan Suhag*, Aklima Khatun, Ikki Tateishi, Mai Furukawa, Hideyuki Katsumata and Satoshi Kaneco*, 
{"title":"Visible Light Induced Photocatalytic Degradation of Diclofenac in Aqueous Solution Using Fabricated ZnO/g-C3N4 by Facile Calcination Technique","authors":"Mahmudul Hassan Suhag*,&nbsp;Aklima Khatun,&nbsp;Ikki Tateishi,&nbsp;Mai Furukawa,&nbsp;Hideyuki Katsumata and Satoshi Kaneco*,&nbsp;","doi":"10.1021/acsomega.4c0567910.1021/acsomega.4c05679","DOIUrl":null,"url":null,"abstract":"<p >The ability of the heterojunction between two distinct semiconductors with appropriately matched band gaps to improve the separation of photogenerated electron–hole pairs has been demonstrated to enhance photocatalytic activity. Hence, ZnO/g-C<sub>3</sub>N<sub>4</sub> composites have been fabricated by the facile deposition and calcination of ZnO and g-C<sub>3</sub>N<sub>4</sub>. X-ray photoelectron spectroscopy, powder X-ray diffraction, and Fourier transform infrared spectroscopy confirm the formation of the composite. Scanning electron microscope, transmission electron microscope, and energy-dispersive X-ray spectroscopy morphological analysis reveal that ZnO was homogeneously spread over the g-C<sub>3</sub>N<sub>4</sub> surface. UV–vis diffuse reflectance spectroscopy analysis shows the slightly enhanced visible light absorption ability of the composite. Photoluminescence (PL) spectroscopy and electrochemical impedance spectroscopy analysis prove the higher charge separation of the composite during the irradiation of light. The composite shows admirable photocatalytic efficiency in the visible light-driven photocatalytic degradation of an aqueous diclofenac (DFC) solution. The superoxide anion radical (•O<sub>2</sub><sup>–</sup>) and hydroxyl radical (•OH) act as reactive species during the degradation reaction. Probable reaction mechanisms have been proposed.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsomega.4c05679","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsomega.4c05679","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The ability of the heterojunction between two distinct semiconductors with appropriately matched band gaps to improve the separation of photogenerated electron–hole pairs has been demonstrated to enhance photocatalytic activity. Hence, ZnO/g-C3N4 composites have been fabricated by the facile deposition and calcination of ZnO and g-C3N4. X-ray photoelectron spectroscopy, powder X-ray diffraction, and Fourier transform infrared spectroscopy confirm the formation of the composite. Scanning electron microscope, transmission electron microscope, and energy-dispersive X-ray spectroscopy morphological analysis reveal that ZnO was homogeneously spread over the g-C3N4 surface. UV–vis diffuse reflectance spectroscopy analysis shows the slightly enhanced visible light absorption ability of the composite. Photoluminescence (PL) spectroscopy and electrochemical impedance spectroscopy analysis prove the higher charge separation of the composite during the irradiation of light. The composite shows admirable photocatalytic efficiency in the visible light-driven photocatalytic degradation of an aqueous diclofenac (DFC) solution. The superoxide anion radical (•O2) and hydroxyl radical (•OH) act as reactive species during the degradation reaction. Probable reaction mechanisms have been proposed.

利用简易煅烧技术制备的 ZnO/g-C3N4 在可见光诱导下光催化降解水溶液中的双氯芬酸
两种具有适当匹配带隙的不同半导体之间的异质结能够改善光生电子-空穴对的分离,从而提高光催化活性。因此,通过 ZnO 和 g-C3N4 的简单沉积和煅烧,制备出了 ZnO/g-C3N4 复合材料。X 射线光电子能谱、粉末 X 射线衍射和傅立叶变换红外光谱证实了复合材料的形成。扫描电子显微镜、透射电子显微镜和能量色散 X 射线光谱形态分析表明,氧化锌均匀地分布在 g-C3N4 表面。紫外-可见漫反射光谱分析显示,复合材料对可见光的吸收能力略有增强。光致发光(PL)光谱和电化学阻抗光谱分析证明了该复合材料在光照射下具有更高的电荷分离能力。在可见光驱动光催化降解双氯芬酸水溶液(DFC)的过程中,该复合材料表现出令人赞叹的光催化效率。超氧阴离子自由基(-O2-)和羟基自由基(-OH)是降解反应中的活性物种。提出了可能的反应机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信