High-Entropy Multiple-Anion Aqueous Electrolytes for Long-Life Zn-Metal Anodes

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Shisheng Hou, Jie Luo*, Wenbin Gong, Yucheng Xie, Xuhui Zhou, Fan Yue, Jiaxin Shen, Chen Li, Lei Wei, Feng Xu* and Qichong Zhang*, 
{"title":"High-Entropy Multiple-Anion Aqueous Electrolytes for Long-Life Zn-Metal Anodes","authors":"Shisheng Hou,&nbsp;Jie Luo*,&nbsp;Wenbin Gong,&nbsp;Yucheng Xie,&nbsp;Xuhui Zhou,&nbsp;Fan Yue,&nbsp;Jiaxin Shen,&nbsp;Chen Li,&nbsp;Lei Wei,&nbsp;Feng Xu* and Qichong Zhang*,&nbsp;","doi":"10.1021/acsnano.4c1266010.1021/acsnano.4c12660","DOIUrl":null,"url":null,"abstract":"<p >Aqueous zinc-ion batteries (AZIBs) hold great promise for large-scale energy storage applications, however, their practical use is significantly hindered by issues such as zinc dendrite growth and hydrogen evolution. To address these challenges, we propose a high-entropy (HE) electrolyte design strategy that incorporates multiple zinc salts, aimed at enhancing ion kinetics and improving the electrochemical stability of the electrolyte. The interactions between multiple anions and Zn<sup>2+</sup> increase the complexity of the solvation structure, resulting in smaller ion clusters while maintaining weakly anion-rich solvation structures. This leads to improved ion mobility and the formation of robust interphase layers on the electrode–electrolyte interface. Moreover, the HE electrolyte effectively suppresses hydrogen evolution and corrosion side reactions while facilitating uniform and reversible Zn plating/stripping processes. Impressively, the optimized electrolyte enables dendrite-free Zn plating/stripping for over 3000 h in symmetric cells and achieves a high Coulombic efficiency of 99.5% at 10 mA cm<sup>–2</sup> in asymmetric cells. Inspiringly, full cells paired with Ca-VO<sub>2</sub> cathodes demonstrate excellent performance, retaining 81.5% of the initial capacity over 1800 cycles at 5 A g<sup>–1</sup>. These significant findings highlight the potential of this electrolyte design strategy to improve the performance and lifespan of Zn-metal anodes in AZIBs.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"18 45","pages":"31524–31536 31524–31536"},"PeriodicalIF":15.8000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.4c12660","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Aqueous zinc-ion batteries (AZIBs) hold great promise for large-scale energy storage applications, however, their practical use is significantly hindered by issues such as zinc dendrite growth and hydrogen evolution. To address these challenges, we propose a high-entropy (HE) electrolyte design strategy that incorporates multiple zinc salts, aimed at enhancing ion kinetics and improving the electrochemical stability of the electrolyte. The interactions between multiple anions and Zn2+ increase the complexity of the solvation structure, resulting in smaller ion clusters while maintaining weakly anion-rich solvation structures. This leads to improved ion mobility and the formation of robust interphase layers on the electrode–electrolyte interface. Moreover, the HE electrolyte effectively suppresses hydrogen evolution and corrosion side reactions while facilitating uniform and reversible Zn plating/stripping processes. Impressively, the optimized electrolyte enables dendrite-free Zn plating/stripping for over 3000 h in symmetric cells and achieves a high Coulombic efficiency of 99.5% at 10 mA cm–2 in asymmetric cells. Inspiringly, full cells paired with Ca-VO2 cathodes demonstrate excellent performance, retaining 81.5% of the initial capacity over 1800 cycles at 5 A g–1. These significant findings highlight the potential of this electrolyte design strategy to improve the performance and lifespan of Zn-metal anodes in AZIBs.

Abstract Image

用于长寿命锌金属阳极的高熵多阴离子水电解质
锌离子水电池(AZIBs)在大规模储能应用中大有可为,但其实际应用却受到锌枝晶生长和氢演化等问题的严重阻碍。为了应对这些挑战,我们提出了一种结合多种锌盐的高熵电解质设计策略,旨在增强离子动力学并提高电解质的电化学稳定性。多种阴离子和 Zn2+ 之间的相互作用增加了溶解结构的复杂性,从而在保持弱富阴离子溶解结构的同时,产生了更小的离子团簇。这就提高了离子的流动性,并在电极-电解质界面上形成稳固的相间层。此外,HE 电解质还能有效抑制氢演化和腐蚀副反应,同时促进均匀、可逆的锌电镀/剥离过程。令人印象深刻的是,优化后的电解液可使对称电池在超过 3000 小时的时间内实现无枝晶的镀锌/剥离,并使非对称电池在 10 mA cm-2 电流条件下的库仑效率高达 99.5%。令人鼓舞的是,与 Ca-VO2 阴极配对的全电池表现出卓越的性能,在 5 A g-1 的条件下,经过 1800 个循环后,仍能保持 81.5% 的初始容量。这些重要发现凸显了这种电解质设计策略在提高 AZIB 中锌金属阳极的性能和寿命方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信