{"title":"Insights into Hyper-Efficient Construction of Compact Artificial SEI for Highly Reversible Mg Metal Anode","authors":"Yuhang Chen, Xing Shen, Jingfeng Wang*, Yiming Zhang, Yue Hao, Le Tong, Guangsheng Huang, Qian Li, Xiaoyuan Zhou, Baihua Qu* and Fusheng Pan, ","doi":"10.1021/acsenergylett.4c0212310.1021/acsenergylett.4c02123","DOIUrl":null,"url":null,"abstract":"<p >The practical applications of Mg metal anodes in rechargeable magnesium batteries (RMBs) have been seriously hindered due to the unstable anode interface. Herein, a simple and hyper-efficient hydrolysis of metal chloride strategy is proposed to obtain a dense layer of artificial SEI on the surface of the Mg anode. Based on the variations of relative compactness density (rρ<sub>c</sub>), the morphology and electrochemical properties of the artificial SEI layer can be precisely regulated. Moreover, the surface-reconstructed In/MgCl<sub>2</sub>@Mg electrode can achieve an ultralong cycle life of 1500 cycles at a current density of 3 mA cm<sup>–2</sup> and 1 mA h cm<sup>–2</sup> as well as a low overpotential (0.25 V). Consequently, a stable cycle capacity can also be maintained at 1C after 1000 cycles in full cell configurations, matching with the Mo<sub>6</sub>S<sub>8</sub> cathode. This study provides a novel design concept and quantitative criteria for the specific preparation of efficient Mg anodes.</p>","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":"9 11","pages":"5616–5626 5616–5626"},"PeriodicalIF":19.3000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsenergylett.4c02123","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The practical applications of Mg metal anodes in rechargeable magnesium batteries (RMBs) have been seriously hindered due to the unstable anode interface. Herein, a simple and hyper-efficient hydrolysis of metal chloride strategy is proposed to obtain a dense layer of artificial SEI on the surface of the Mg anode. Based on the variations of relative compactness density (rρc), the morphology and electrochemical properties of the artificial SEI layer can be precisely regulated. Moreover, the surface-reconstructed In/MgCl2@Mg electrode can achieve an ultralong cycle life of 1500 cycles at a current density of 3 mA cm–2 and 1 mA h cm–2 as well as a low overpotential (0.25 V). Consequently, a stable cycle capacity can also be maintained at 1C after 1000 cycles in full cell configurations, matching with the Mo6S8 cathode. This study provides a novel design concept and quantitative criteria for the specific preparation of efficient Mg anodes.
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍:
ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format.
ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology.
The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.