Controlled Spalling of 4H Silicon Carbide with Investigated Spin Coherence for Quantum Engineering Integration

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Connor P. Horn, Christina Wicker, Antoni Wellisz, Cyrus Zeledon, Pavani Vamsi Krishna Nittala, F. Joseph Heremans, David D. Awschalom and Supratik Guha*, 
{"title":"Controlled Spalling of 4H Silicon Carbide with Investigated Spin Coherence for Quantum Engineering Integration","authors":"Connor P. Horn,&nbsp;Christina Wicker,&nbsp;Antoni Wellisz,&nbsp;Cyrus Zeledon,&nbsp;Pavani Vamsi Krishna Nittala,&nbsp;F. Joseph Heremans,&nbsp;David D. Awschalom and Supratik Guha*,&nbsp;","doi":"10.1021/acsnano.4c1097810.1021/acsnano.4c10978","DOIUrl":null,"url":null,"abstract":"<p >We detail scientific and engineering advances which enable the controlled spalling and layer transfer of single crystal 4H silicon carbide (4H-SiC) from bulk substrates. 4H-SiC’s properties, including high thermal conductivity and a wide bandgap, make it an ideal semiconductor for power electronics. Moreover, 4H-SiC is an excellent host of solid-state atomic defect qubits for quantum computing and quantum networking. Because 4H-SiC substrates are expensive (due to long growth times and limited yield), techniques for removal and transfer of bulk-quality films are desirable for substrate reuse and integration of the separated films. In this work, we utilize updated approaches for stressor layer thickness control and spalling crack initiation to demonstrate controlled spalling of 4H-SiC, the highest fracture toughness crystal spalled to date. We achieve coherent spin control of neutral divacancy (VV<sup>0</sup>) qubit ensembles and measure a quasi-bulk spin T<sub>2</sub> of 79.7 μs in the spalled films.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"18 45","pages":"31381–31389 31381–31389"},"PeriodicalIF":15.8000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsnano.4c10978","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.4c10978","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We detail scientific and engineering advances which enable the controlled spalling and layer transfer of single crystal 4H silicon carbide (4H-SiC) from bulk substrates. 4H-SiC’s properties, including high thermal conductivity and a wide bandgap, make it an ideal semiconductor for power electronics. Moreover, 4H-SiC is an excellent host of solid-state atomic defect qubits for quantum computing and quantum networking. Because 4H-SiC substrates are expensive (due to long growth times and limited yield), techniques for removal and transfer of bulk-quality films are desirable for substrate reuse and integration of the separated films. In this work, we utilize updated approaches for stressor layer thickness control and spalling crack initiation to demonstrate controlled spalling of 4H-SiC, the highest fracture toughness crystal spalled to date. We achieve coherent spin control of neutral divacancy (VV0) qubit ensembles and measure a quasi-bulk spin T2 of 79.7 μs in the spalled films.

研究自旋相干的 4H 碳化硅受控剥落,实现量子工程集成
我们详细介绍了在科学和工程学方面取得的进展,这些进展使 4H 碳化硅单晶体(4H-SiC)能够从块状基底进行受控剥落和层转移。4H-SiC 的特性,包括高热导率和宽带隙,使其成为电力电子器件的理想半导体。此外,4H-SiC 还是用于量子计算和量子网络的固态原子缺陷量子比特的绝佳宿主。由于 4H-SiC 基片价格昂贵(由于生长时间长、产量有限),因此需要移除和转移大量优质薄膜的技术,以实现基片的重复使用和分离薄膜的集成。在这项工作中,我们利用最新的应力层厚度控制和剥落裂纹引发方法,展示了 4H-SiC 的受控剥落,这是迄今为止断裂韧性最高的剥落晶体。我们实现了对中性二价(VV0)量子比特集合的相干自旋控制,并在剥落的薄膜中测出了 79.7 μs 的准大量自旋 T2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信