Ying Jiang, Xiang Wu, Guozhong Lu, Hui Feng, Jiefan Liu, Jiaxing Lv, Fushan Geng, Ming Shen* and Bingwen Hu*,
{"title":"High-Areal-Capacity All-Solid-State Lithium Batteries Enabled by Electronically Conductive Li-Deficient LiNiO2 Cathode","authors":"Ying Jiang, Xiang Wu, Guozhong Lu, Hui Feng, Jiefan Liu, Jiaxing Lv, Fushan Geng, Ming Shen* and Bingwen Hu*, ","doi":"10.1021/acsenergylett.4c0145710.1021/acsenergylett.4c01457","DOIUrl":null,"url":null,"abstract":"<p >All-solid-state lithium batteries (ASSLBs) with Ni-rich cathodes are promising candidates for achieving high energy and improved safety. However, their electrochemical performance is limited by cathode loading, especially in the absence of conductive agents. Herein, we utilize electronically conductive Li-deficient LiNiO<sub>2</sub> (LD-LNO) to construct high-areal-capacity ASSLBs under high cathode loading. This LD-LNO shows an inherent enhanced electronic conductivity and minimal surface impurities. Electrochemical analysis combined with solid-state nuclear magnetic resonance spectroscopy demonstrates the mitigation of the detrimental H3 phase transition and the side reactions at the LD-LNO/Li<sub>6</sub>PS<sub>5</sub>Cl interface. As a result, LD-LNO-based ASSLBs achieve competitive cyclability and rate capability without the need for cathode modifications. A high reversible areal capacity of 15.2 mAh cm<sup>–2</sup> is attained at 35 °C under a 133.8 mg cm<sup>–2</sup> LD-LNO mass loading. This work sheds light on electronically conductive cathodes, providing a perspective for addressing the high cathode loading issue in ASSLBs.</p>","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":"9 11","pages":"5529–5538 5529–5538"},"PeriodicalIF":19.3000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsenergylett.4c01457","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
All-solid-state lithium batteries (ASSLBs) with Ni-rich cathodes are promising candidates for achieving high energy and improved safety. However, their electrochemical performance is limited by cathode loading, especially in the absence of conductive agents. Herein, we utilize electronically conductive Li-deficient LiNiO2 (LD-LNO) to construct high-areal-capacity ASSLBs under high cathode loading. This LD-LNO shows an inherent enhanced electronic conductivity and minimal surface impurities. Electrochemical analysis combined with solid-state nuclear magnetic resonance spectroscopy demonstrates the mitigation of the detrimental H3 phase transition and the side reactions at the LD-LNO/Li6PS5Cl interface. As a result, LD-LNO-based ASSLBs achieve competitive cyclability and rate capability without the need for cathode modifications. A high reversible areal capacity of 15.2 mAh cm–2 is attained at 35 °C under a 133.8 mg cm–2 LD-LNO mass loading. This work sheds light on electronically conductive cathodes, providing a perspective for addressing the high cathode loading issue in ASSLBs.
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍:
ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format.
ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology.
The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.