Dual-Function ZnO-Li3TaO4 Surface Modification of Single-Crystalline Ni-Rich Cathodes for All-Solid-State Batteries

IF 19.3 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Jun Pyo Son, Jae-Seung Kim, Chang-Gi Lee, Juhyoun Park, Jong Seok Kim, Se-Ho Kim, Baptiste Gault, Dong-Hwa Seo and Yoon Seok Jung*, 
{"title":"Dual-Function ZnO-Li3TaO4 Surface Modification of Single-Crystalline Ni-Rich Cathodes for All-Solid-State Batteries","authors":"Jun Pyo Son,&nbsp;Jae-Seung Kim,&nbsp;Chang-Gi Lee,&nbsp;Juhyoun Park,&nbsp;Jong Seok Kim,&nbsp;Se-Ho Kim,&nbsp;Baptiste Gault,&nbsp;Dong-Hwa Seo and Yoon Seok Jung*,&nbsp;","doi":"10.1021/acsenergylett.4c0201610.1021/acsenergylett.4c02016","DOIUrl":null,"url":null,"abstract":"<p >Herein, we introduce a ZnO–Li<sub>3</sub>TaO<sub>4</sub> composite coating designed to stabilize single-crystalline LiNi<sub>0.95</sub>Co<sub>0.03</sub>Mn<sub>0.015</sub>Al<sub>0.005</sub>O<sub>2</sub> (sNCMA) in ASSBs with Li<sub>6</sub>PS<sub>5</sub>Cl. This dual-function coating establishes a Ta-rich surface layer and Zn-doped near-surface regions, as verified by detailed analyses, including atom probe tomography and transmission electron microscopy. The ZnO-Li<sub>3</sub>TaO<sub>4</sub> coating markedly enhances both interfacial and structural stabilities, showcasing an exceptional performance in sNCMA|Li<sub>6</sub>PS<sub>5</sub>Cl|(Li–In) cells at 30 °C (initial discharge capacity of 196 mA h g<sup>–1</sup> with 82.7% capacity retention after 1000 cycles), exceeding the performance of both uncoated or only Li<sub>3</sub>TaO<sub>4</sub>-coated sNCMA (only 82.5 or 84.2%, respectively, after 200 cycles). The protective role of ZnO-Li<sub>3</sub>TaO<sub>4</sub> is corroborated by electrochemical impedance spectroscopy and ex situ X-ray photoelectron spectroscopy. Finally, density functional theory calculations and comparative tests with oxidatively inert Li<sub>2</sub>ZrCl<sub>6</sub> catholytes elucidate the enhanced performance mechanism, specifically, the suppression of Ni<sup>2+</sup> migration by Zn doping, emphasizing the importance of cathode structural stability in all-solid-state batteries.</p>","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":"9 11","pages":"5403–5412 5403–5412"},"PeriodicalIF":19.3000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsenergylett.4c02016","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Herein, we introduce a ZnO–Li3TaO4 composite coating designed to stabilize single-crystalline LiNi0.95Co0.03Mn0.015Al0.005O2 (sNCMA) in ASSBs with Li6PS5Cl. This dual-function coating establishes a Ta-rich surface layer and Zn-doped near-surface regions, as verified by detailed analyses, including atom probe tomography and transmission electron microscopy. The ZnO-Li3TaO4 coating markedly enhances both interfacial and structural stabilities, showcasing an exceptional performance in sNCMA|Li6PS5Cl|(Li–In) cells at 30 °C (initial discharge capacity of 196 mA h g–1 with 82.7% capacity retention after 1000 cycles), exceeding the performance of both uncoated or only Li3TaO4-coated sNCMA (only 82.5 or 84.2%, respectively, after 200 cycles). The protective role of ZnO-Li3TaO4 is corroborated by electrochemical impedance spectroscopy and ex situ X-ray photoelectron spectroscopy. Finally, density functional theory calculations and comparative tests with oxidatively inert Li2ZrCl6 catholytes elucidate the enhanced performance mechanism, specifically, the suppression of Ni2+ migration by Zn doping, emphasizing the importance of cathode structural stability in all-solid-state batteries.

Abstract Image

用于全固态电池的单晶富镍阴极的 ZnO-Li3TaO4 双功能表面改性
在本文中,我们介绍了一种 ZnO-Li3TaO4 复合涂层,旨在稳定含 Li6PS5Cl 的 ASSB 中的单晶 LiNi0.95Co0.03Mn0.015Al0.005O2 (sNCMA)。原子探针断层扫描和透射电子显微镜等详细分析证实,这种双重功能涂层可形成富含钽的表层和掺杂锌的近表面区域。ZnO-Li3TaO4 涂层显著增强了界面稳定性和结构稳定性,在 30 °C 的 sNCMA|Li6PS5Cl|(Li-In)电池中表现出卓越的性能(初始放电容量为 196 mA h g-1,1000 次循环后容量保持率为 82.7%),超过了未涂层或仅有 Li3TaO4 涂层的 sNCMA 性能(200 次循环后容量保持率分别仅为 82.5% 或 84.2%)。电化学阻抗光谱和原位 X 射线光电子能谱证实了 ZnO-Li3TaO4 的保护作用。最后,密度泛函理论计算以及与氧化惰性 Li2ZrCl6 阴极的对比测试阐明了性能增强的机制,特别是 Zn 掺杂抑制了 Ni2+ 迁移,强调了阴极结构稳定性在全固态电池中的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Energy Letters
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍: ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format. ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology. The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信