Multiresolution Analysis of HRRR Meteorological Parameters and GOES-R AOD for Hourly PM2.5 Prediction

IF 10.8 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Dimple Pruthi, Qingyang Zhu, Wenhao Wang and Yang Liu*, 
{"title":"Multiresolution Analysis of HRRR Meteorological Parameters and GOES-R AOD for Hourly PM2.5 Prediction","authors":"Dimple Pruthi,&nbsp;Qingyang Zhu,&nbsp;Wenhao Wang and Yang Liu*,&nbsp;","doi":"10.1021/acs.est.4c0379510.1021/acs.est.4c03795","DOIUrl":null,"url":null,"abstract":"<p >High-resolution, comprehensive exposure data are crucial for accurately estimating the human health impact of PM<sub>2.5</sub>. In recent years, satellite remote sensing data have been increasingly utilized in PM<sub>2.5</sub> models to overcome the limited spatial coverage of ground monitoring stations. However, data gaps in satellite-retrieved parameters such as aerosol optical depth (AOD), the sparsity of regulatory air quality monitors for model training, and nonlinear relationships between PM<sub>2.5</sub> and meteorological conditions can affect model performance and cause data gaps in most existing PM<sub>2.5</sub> models. In this study, spatial gaps in AOD obtained from Geostationary Operational Environmental Satellite-16 are filled using Goddard Earth Observing System Composition Forecasting AOD estimations. Furthermore, to improve model performance, meteorological predictors such as temperature from the High-Resolution Rapid Refresh model are preprocessed using Daubechies wavelet to extract low and high frequency components. The spatially gap-filled AOD, along with meteorological data, are ingested into a machine learning model to predict hourly PM<sub>2.5</sub> at a 1 km spatial resolution in California. The model evaluation metrics (OOB (out-of-bag) R<sup>2</sup> = 0.86 and RMSE (root-mean-square error) = 9.27 μg/m<sup>3</sup> and 10-fold spatial cross-validation R<sup>2</sup> = 0.82 and RMSE = 9.82 μg/m<sup>3</sup>) demonstrate the model’s reliability in predicting ambient PM<sub>2.5</sub>, especially for states like California that experience frequent episodes of wildfires.</p><p >By incorporating the spatially filled GOES-AOD high resolution product and using wavelet transforms, the hourly seamless PM<sub>2.5</sub> concentrations across California are well estimated at 1 km.</p>","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"58 45","pages":"20040–20048 20040–20048"},"PeriodicalIF":10.8000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.est.4c03795","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.est.4c03795","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

High-resolution, comprehensive exposure data are crucial for accurately estimating the human health impact of PM2.5. In recent years, satellite remote sensing data have been increasingly utilized in PM2.5 models to overcome the limited spatial coverage of ground monitoring stations. However, data gaps in satellite-retrieved parameters such as aerosol optical depth (AOD), the sparsity of regulatory air quality monitors for model training, and nonlinear relationships between PM2.5 and meteorological conditions can affect model performance and cause data gaps in most existing PM2.5 models. In this study, spatial gaps in AOD obtained from Geostationary Operational Environmental Satellite-16 are filled using Goddard Earth Observing System Composition Forecasting AOD estimations. Furthermore, to improve model performance, meteorological predictors such as temperature from the High-Resolution Rapid Refresh model are preprocessed using Daubechies wavelet to extract low and high frequency components. The spatially gap-filled AOD, along with meteorological data, are ingested into a machine learning model to predict hourly PM2.5 at a 1 km spatial resolution in California. The model evaluation metrics (OOB (out-of-bag) R2 = 0.86 and RMSE (root-mean-square error) = 9.27 μg/m3 and 10-fold spatial cross-validation R2 = 0.82 and RMSE = 9.82 μg/m3) demonstrate the model’s reliability in predicting ambient PM2.5, especially for states like California that experience frequent episodes of wildfires.

By incorporating the spatially filled GOES-AOD high resolution product and using wavelet transforms, the hourly seamless PM2.5 concentrations across California are well estimated at 1 km.

用于每小时 PM2.5 预测的 HRRR 气象参数和 GOES-R AOD 的多分辨率分析
高分辨率、全面的暴露数据对于准确估计 PM2.5 对人类健康的影响至关重要。近年来,PM2.5 模型越来越多地使用卫星遥感数据,以克服地面监测站空间覆盖范围有限的问题。然而,卫星获取的气溶胶光学深度(AOD)等参数的数据缺口、用于模型训练的监管空气质量监测仪的稀缺性以及 PM2.5 与气象条件之间的非线性关系都会影响模型的性能,并造成大多数现有 PM2.5 模型的数据缺口。在本研究中,利用戈达德地球观测系统成分预测 AOD 估计值填补了从地球静止业务环境卫星-16 获得的 AOD 空间缺口。此外,为提高模型性能,使用道贝歇小波对高分辨率快速刷新模型中的温度等气象预测因子进行预处理,以提取低频和高频成分。将空间间隙填充的 AOD 与气象数据一起输入机器学习模型,以预测加利福尼亚州 1 千米空间分辨率的每小时 PM2.5。模型评估指标(OOB(袋外)R2 = 0.86,RMSE(均方根误差)= 9.27 μg/m3;10 倍空间交叉验证 R2 = 0.82,RMSE = 9.82 μg/m3)证明了该模型在预测环境 PM2.5 方面的可靠性。通过结合空间填充的 GOES-AOD 高分辨率产品并使用小波变换,可以很好地估算出加利福尼亚州 1 公里范围内的每小时无缝 PM2.5 浓度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
环境科学与技术
环境科学与技术 环境科学-工程:环境
CiteScore
17.50
自引率
9.60%
发文量
12359
审稿时长
2.8 months
期刊介绍: Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences. Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信