{"title":"Nonflammable Sulfone-Based Electrolytes with Mechanically and Thermally Stable Interfaces Enabling LiNi0.5Mn1.5O4 to Operate at High Temperature","authors":"Tian-Ling Chen, Mengting Liu*, Xin-Yu Fan, Yi-Hu Feng, Qiang Liu, Xue-Ru Liu, Hanshen Xin* and Peng-Fei Wang*, ","doi":"10.1021/acsenergylett.4c0245810.1021/acsenergylett.4c02458","DOIUrl":null,"url":null,"abstract":"<p >The development of high-energy 5 V-class LiNi<sub>0.5</sub>Mn<sub>1.5</sub>O<sub>4</sub> batteries is severely limited by the instability of the cathode electrolyte interphase (CEI) at high temperature. Herein, we propose a nonflammable sulfone (SL)-based fluorinated hybrid electrolyte to form stable, uniform, and thin CEI layers, enabling Li||LiNi<sub>0.5</sub>Mn<sub>1.5</sub>O<sub>4</sub> batteries to achieve elevated electrochemical performance at 60 °C. The formed highly stable inorganic-dominated CEI, comprising Li<sub><i>x</i></sub>SO<sub><i>y</i></sub>, Li<sub><i>x</i></sub>BO<sub><i>y</i></sub>, and LiF inorganic compositions, exhibits good thermal stability and mechanical strength. Moreover, the robust CEI layer effectively shields the LNMO particles from undesirable side-reactions and stabilizes the interface within the LiNi<sub>0.5</sub>Mn<sub>1.5</sub>O<sub>4</sub> cathode during high-temperature cycling. In contrast to the conventional electrolyte, the Li||LiNi<sub>0.5</sub>Mn<sub>1.5</sub>O<sub>4</sub> battery employing a nonflammable SL-based electrolyte exhibits a stable capacity retention of 88.5% after 100 cycles at 60 °C free from the risk of thermal runaway. This study reveals valuable insights into advanced electrolyte technology, paving the way for safer applications of Co-free high-energy batteries in the future.</p>","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":"9 11","pages":"5452–5460 5452–5460"},"PeriodicalIF":19.3000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsenergylett.4c02458","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The development of high-energy 5 V-class LiNi0.5Mn1.5O4 batteries is severely limited by the instability of the cathode electrolyte interphase (CEI) at high temperature. Herein, we propose a nonflammable sulfone (SL)-based fluorinated hybrid electrolyte to form stable, uniform, and thin CEI layers, enabling Li||LiNi0.5Mn1.5O4 batteries to achieve elevated electrochemical performance at 60 °C. The formed highly stable inorganic-dominated CEI, comprising LixSOy, LixBOy, and LiF inorganic compositions, exhibits good thermal stability and mechanical strength. Moreover, the robust CEI layer effectively shields the LNMO particles from undesirable side-reactions and stabilizes the interface within the LiNi0.5Mn1.5O4 cathode during high-temperature cycling. In contrast to the conventional electrolyte, the Li||LiNi0.5Mn1.5O4 battery employing a nonflammable SL-based electrolyte exhibits a stable capacity retention of 88.5% after 100 cycles at 60 °C free from the risk of thermal runaway. This study reveals valuable insights into advanced electrolyte technology, paving the way for safer applications of Co-free high-energy batteries in the future.
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍:
ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format.
ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology.
The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.